These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36750148)

  • 1. Selenomethionine as alternative label to the fluorophore TAMRA when exploiting cell-penetrating peptides as blood-brain barrier shuttles to better mimic the physicochemical properties of the non-labelled peptides.
    Þorgeirsdóttir DÝ; Andersen JH; Perch-Nielsen M; Møller LH; Grønbæk-Thorsen F; Kolberg HG; Gammelgaard B; Kristensen M
    Eur J Pharm Sci; 2023 Apr; 183():106400. PubMed ID: 36750148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin.
    Hyrup Møller L; Bahnsen JS; Nielsen HM; Østergaard J; Stürup S; Gammelgaard B
    Eur J Pharm Sci; 2015 Jan; 67():76-84. PubMed ID: 25447743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly cationic cell-penetrating peptides affect the barrier integrity and facilitates mannitol permeation in a human stem cell-based blood-brain barrier model.
    Frøslev P; Franzyk H; Ozgür B; Brodin B; Kristensen M
    Eur J Pharm Sci; 2022 Jan; 168():106054. PubMed ID: 34728364
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Christensen MV; Kongstad KT; Sondergaard TE; Staerk D; Nielsen HM; Franzyk H; Wimmer R
    J Biomol NMR; 2019 Apr; 73(3-4):167-182. PubMed ID: 30887171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.
    Meloni BP; Craig AJ; Milech N; Hopkins RM; Watt PM; Knuckey NW
    Cell Mol Neurobiol; 2014 Mar; 34(2):173-81. PubMed ID: 24213248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.
    Bera S; Kar RK; Mondal S; Pahan K; Bhunia A
    Biochemistry; 2016 Sep; 55(35):4982-96. PubMed ID: 27532224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugation of Therapeutic PSD-95 Inhibitors to the Cell-Penetrating Peptide Tat Affects Blood-Brain Barrier Adherence, Uptake, and Permeation.
    Kristensen M; Kucharz K; Felipe Alves Fernandes E; Strømgaard K; Schallburg Nielsen M; Cederberg Helms HC; Bach A; Ulrikkaholm Tofte-Hansen M; Irene Aldana Garcia B; Lauritzen M; Brodin B
    Pharmaceutics; 2020 Jul; 12(7):. PubMed ID: 32674358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo.
    Stalmans S; Bracke N; Wynendaele E; Gevaert B; Peremans K; Burvenich C; Polis I; De Spiegeleer B
    PLoS One; 2015; 10(10):e0139652. PubMed ID: 26465925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of cell-penetrating peptide fragments by disulfide formation.
    Tooyserkani R; Lipiński W; Willemsen B; Löwik DWPM
    Amino Acids; 2020 Aug; 52(8):1161-1168. PubMed ID: 32737661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle transport across in vitro olfactory cell monolayers.
    Gartziandia O; Egusquiaguirre SP; Bianco J; Pedraz JL; Igartua M; Hernandez RM; Préat V; Beloqui A
    Int J Pharm; 2016 Feb; 499(1-2):81-89. PubMed ID: 26721725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
    Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cargo delivery kinetics of cell-penetrating peptides.
    Hällbrink M; Florén A; Elmquist A; Pooga M; Bartfai T; Langel U
    Biochim Biophys Acta; 2001 Dec; 1515(2):101-9. PubMed ID: 11718666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure.
    Bahnsen JS; Franzyk H; Sandberg-Schaal A; Nielsen HM
    Biochim Biophys Acta; 2013 Feb; 1828(2):223-32. PubMed ID: 23085001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Immunogenicity of a Cytotoxic T Cell Epitope Delivered by Penetratin and TAT Cell Penetrating Peptides.
    Brooks N; Esparon S; Pouniotis D; Pietersz GA
    Molecules; 2015 Aug; 20(8):14033-50. PubMed ID: 26247926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models.
    Tréhin R; Krauss U; Beck-Sickinger AG; Merkle HP; Nielsen HM
    Pharm Res; 2004 Jul; 21(7):1248-56. PubMed ID: 15290867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore.
    Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C
    Elife; 2021 Oct; 10():. PubMed ID: 34713805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of pharmaceutical peptides using selenium as an elemental detection label.
    Møller LH; Gabel-Jensen C; Franzyk H; Bahnsen JS; Stürup S; Gammelgaard B
    Metallomics; 2014 Sep; 6(9):1639-47. PubMed ID: 25027387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants for brain targeting by peptides: a meta-analysis approach with experimental validation.
    Cavaco M; Fraga P; Valle J; Silva RDM; Gano L; Correia JDG; Andreu D; Castanho MARB; Neves V
    Fluids Barriers CNS; 2024 May; 21(1):45. PubMed ID: 38802930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-glycosaminoglycan cluster formation involving cell penetrating peptides.
    Rullo A; Qian J; Nitz M
    Biopolymers; 2011 Oct; 95(10):722-31. PubMed ID: 21538329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides.
    Guo F; Ouyang T; Peng T; Zhang X; Xie B; Yang X; Liang D; Zhong H
    Biomater Sci; 2019 Mar; 7(4):1493-1506. PubMed ID: 30672923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.