These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36750160)
1. Multimodal predictions of treatment outcome in major depression: A comparison of data-driven predictors with importance ratings by clinicians. Rost N; Dwyer DB; Gaffron S; Rechberger S; Maier D; Binder EB; Brückl TM J Affect Disord; 2023 Apr; 327():330-339. PubMed ID: 36750160 [TBL] [Abstract][Full Text] [Related]
2. Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report. Sajjadian M; Uher R; Ho K; Hassel S; Milev R; Frey BN; Farzan F; Blier P; Foster JA; Parikh SV; Müller DJ; Rotzinger S; Soares CN; Turecki G; Taylor VH; Lam RW; Strother SC; Kennedy SH Psychol Med; 2023 Sep; 53(12):5374-5384. PubMed ID: 36004538 [TBL] [Abstract][Full Text] [Related]
3. Multimodal Data Integration Advances Longitudinal Prediction of the Naturalistic Course of Depression and Reveals a Multimodal Signature of Remission During 2-Year Follow-up. Habets PC; Thomas RM; Milaneschi Y; Jansen R; Pool R; Peyrot WJ; Penninx BWJH; Meijer OC; van Wingen GA; Vinkers CH Biol Psychiatry; 2023 Dec; 94(12):948-958. PubMed ID: 37330166 [TBL] [Abstract][Full Text] [Related]
4. Letter to the Editor: CONVERGENCES AND DIVERGENCES IN THE ICD-11 VS. DSM-5 CLASSIFICATION OF MOOD DISORDERS. Cerbo AD Turk Psikiyatri Derg; 2021; 32(4):293-295. PubMed ID: 34964106 [TBL] [Abstract][Full Text] [Related]
5. Combining machine learning algorithms for prediction of antidepressant treatment response. Kautzky A; Möller HJ; Dold M; Bartova L; Seemüller F; Laux G; Riedel M; Gaebel W; Kasper S Acta Psychiatr Scand; 2021 Jan; 143(1):36-49. PubMed ID: 33141944 [TBL] [Abstract][Full Text] [Related]
6. Framework for personalized prediction of treatment response in relapsing remitting multiple sclerosis. Stühler E; Braune S; Lionetto F; Heer Y; Jules E; Westermann C; Bergmann A; van Hövell P; BMC Med Res Methodol; 2020 Feb; 20(1):24. PubMed ID: 32028898 [TBL] [Abstract][Full Text] [Related]
7. Using patient self-reports to study heterogeneity of treatment effects in major depressive disorder. Kessler RC; van Loo HM; Wardenaar KJ; Bossarte RM; Brenner LA; Ebert DD; de Jonge P; Nierenberg AA; Rosellini AJ; Sampson NA; Schoevers RA; Wilcox MA; Zaslavsky AM Epidemiol Psychiatr Sci; 2017 Feb; 26(1):22-36. PubMed ID: 26810628 [TBL] [Abstract][Full Text] [Related]
8. Does early improvement triggered by antidepressants predict response/remission? Analysis of data from a naturalistic study on a large sample of inpatients with major depression. Henkel V; Seemüller F; Obermeier M; Adli M; Bauer M; Mundt C; Brieger P; Laux G; Bender W; Heuser I; Zeiler J; Gaebel W; Mayr A; Möller HJ; Riedel M J Affect Disord; 2009 Jun; 115(3):439-49. PubMed ID: 19027961 [TBL] [Abstract][Full Text] [Related]
9. A New Prediction Model for Evaluating Treatment-Resistant Depression. Kautzky A; Baldinger-Melich P; Kranz GS; Vanicek T; Souery D; Montgomery S; Mendlewicz J; Zohar J; Serretti A; Lanzenberger R; Kasper S J Clin Psychiatry; 2017 Feb; 78(2):215-222. PubMed ID: 28068461 [TBL] [Abstract][Full Text] [Related]
10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
11. Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1. Nunez JJ; Nguyen TT; Zhou Y; Cao B; Ng RT; Chen J; Frey BN; Milev R; Müller DJ; Rotzinger S; Soares CN; Uher R; Kennedy SH; Lam RW PLoS One; 2021; 16(6):e0253023. PubMed ID: 34181661 [TBL] [Abstract][Full Text] [Related]
12. The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery. Vernooij LM; van Klei WA; Moons KG; Takada T; van Waes J; Damen JA Cochrane Database Syst Rev; 2021 Dec; 12(12):CD013139. PubMed ID: 34931303 [TBL] [Abstract][Full Text] [Related]
13. Refining Prediction in Treatment-Resistant Depression: Results of Machine Learning Analyses in the TRD III Sample. Kautzky A; Dold M; Bartova L; Spies M; Vanicek T; Souery D; Montgomery S; Mendlewicz J; Zohar J; Fabbri C; Serretti A; Lanzenberger R; Kasper S J Clin Psychiatry; 2018; 79(1):. PubMed ID: 29228516 [TBL] [Abstract][Full Text] [Related]
14. Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis. Watts D; Pulice RF; Reilly J; Brunoni AR; Kapczinski F; Passos IC Transl Psychiatry; 2022 Aug; 12(1):332. PubMed ID: 35961967 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Analysis of Blood microRNA Data in Major Depression: A Case-Control Study for Biomarker Discovery. Qi B; Fiori LM; Turecki G; Trakadis YJ Int J Neuropsychopharmacol; 2020 Nov; 23(8):505-510. PubMed ID: 32365192 [TBL] [Abstract][Full Text] [Related]
16. Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis. Sajjadian M; Lam RW; Milev R; Rotzinger S; Frey BN; Soares CN; Parikh SV; Foster JA; Turecki G; Müller DJ; Strother SC; Farzan F; Kennedy SH; Uher R Psychol Med; 2021 Dec; 51(16):2742-2751. PubMed ID: 35575607 [TBL] [Abstract][Full Text] [Related]
17. A clinical approach to treatment resistance in depressed patients: What to do when the usual treatments don't work well enough? Dodd S; Bauer M; Carvalho AF; Eyre H; Fava M; Kasper S; Kennedy SH; Khoo JP; Lopez Jaramillo C; Malhi GS; McIntyre RS; Mitchell PB; Castro AMP; Ratheesh A; Severus E; Suppes T; Trivedi MH; Thase ME; Yatham LN; Young AH; Berk M World J Biol Psychiatry; 2021 Sep; 22(7):483-494. PubMed ID: 33289425 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression: A Prespecified Secondary Analysis of a Randomized Clinical Trial. Rajpurkar P; Yang J; Dass N; Vale V; Keller AS; Irvin J; Taylor Z; Basu S; Ng A; Williams LM JAMA Netw Open; 2020 Jun; 3(6):e206653. PubMed ID: 32568399 [TBL] [Abstract][Full Text] [Related]
19. Deep phenotyping towards precision psychiatry of first-episode depression - the Brain Drugs-Depression cohort. Jensen KHR; Dam VH; Ganz M; Fisher PM; Ip CT; Sankar A; Marstrand-Joergensen MR; Ozenne B; Osler M; Penninx BWJH; Pinborg LH; Frokjaer VG; Knudsen GM; Jørgensen MB BMC Psychiatry; 2023 Mar; 23(1):151. PubMed ID: 36894940 [TBL] [Abstract][Full Text] [Related]
20. Treatment response classes in major depressive disorder identified by model-based clustering and validated by clinical prediction models. Paul R; Andlauer TFM; Czamara D; Hoehn D; Lucae S; Pütz B; Lewis CM; Uher R; Müller-Myhsok B; Ising M; Sämann PG Transl Psychiatry; 2019 Aug; 9(1):187. PubMed ID: 31383853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]