BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36750200)

  • 1. The pan-cancer analysis identified DIAPH3 as a diagnostic biomarker of clinical cancer.
    Chen X; Xie L; Qiao K; Zhu X; Ren J; Tan Y
    Aging (Albany NY); 2023 Jan; 15(3):689-704. PubMed ID: 36750200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DIAPH3 is a prognostic biomarker and inhibit colorectal cancer progression through maintaining EGFR degradation.
    Huang R; Wu C; Wen J; Yu J; Zhu H; Yu J; Zou Z
    Cancer Med; 2022 Dec; 11(23):4688-4702. PubMed ID: 35538918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockdown of DIAPH3 Inhibits the Proliferation of Cervical Cancer Cells through Inactivating mTOR Signaling Pathway.
    Wan L; Zhu J; Wu Q
    J Oncol; 2021; 2021():4228241. PubMed ID: 34659408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers.
    Wang N; Zhu L; Wang L; Shen Z; Huang X
    Comput Struct Biotechnol J; 2022; 20():3106-3119. PubMed ID: 35782736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GNPNAT1 is a potential biomarker correlated with immune infiltration and immunotherapy outcome in breast cancer.
    Yuan R; Zhang Y; Wang Y; Chen H; Zhang R; Hu Z; Chai C; Chen T
    Front Immunol; 2023; 14():1152678. PubMed ID: 37215111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a necroptosis-related prognostic gene signature associated with tumor immune microenvironment in cervical carcinoma and experimental verification.
    Sun K; Huang C; Li JZ; Luo ZX
    World J Surg Oncol; 2022 Oct; 20(1):342. PubMed ID: 36253777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Role and Regulatory Mechanism of hsa-miR-504 in Cervical Cancer Based on The Cancer Genome Atlas Database.
    Li D; Liu SH; Liu QY; Zou QQ; Lv L; Liu GL; Wu Y
    Cancer Biother Radiopharm; 2021 Aug; 36(6):511-520. PubMed ID: 32589477
    [No Abstract]   [Full Text] [Related]  

  • 8. Decreased expression of CLCA2 and the correlating with immune infiltrates in patients with cervical squamous cell carcinoma: A bioinformatics analysis.
    Yang X; Cao JL; Yang FN; Li XF; Tao LM; Wang F
    Taiwan J Obstet Gynecol; 2021 May; 60(3):480-486. PubMed ID: 33966732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diaphanous related formin 3 knockdown suppresses cell proliferation and metastasis of osteosarcoma cells.
    Zhang Z; Dai F; Luo F; Wu W; Zhang S; Zhou R; Xu J; Zhou Q; Song L
    Discov Oncol; 2021 Jul; 12(1):20. PubMed ID: 35201449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upregulation of
    Wang Q; Zheng W
    Biomed Res Int; 2021; 2021():6663367. PubMed ID: 33763482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analysis of EREG expression, a gene associated with cervical cancer prognosis.
    Yang S; Yang X; Li C
    Am J Cancer Res; 2023; 13(10):4644-4660. PubMed ID: 37970371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EFNA1 is a potential key gene that correlates with immune infiltration in low-grade glioma.
    Hao YP; Wang WY; Qiao Q; Li G
    Medicine (Baltimore); 2021 Jun; 100(22):e26188. PubMed ID: 34087884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of
    Zhao S; Yu M
    DNA Cell Biol; 2020 Feb; 39(2):255-272. PubMed ID: 31977248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the novel prognostic biomarker, MLLT11, reveals its relationship with immune checkpoint markers in glioma.
    Chen L; Xiong Z; Zhao H; Teng C; Liu H; Huang Q; Wanggou S; Li X
    Front Oncol; 2022; 12():889351. PubMed ID: 36033495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein tyrosine phosphatase, receptor type B is a potential biomarker and facilitates cervical cancer metastasis via epithelial-mesenchymal transition.
    Huang ZY; Liao PJ; Liu YX; Zhong M; Sun AH; Jiang XC; Wang XP; Zhang M
    Bioengineered; 2021 Dec; 12(1):5739-5748. PubMed ID: 34516350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and validation of a bladder cancer risk model based on autophagy-related genes.
    Shen C; Yan Y; Yang S; Wang Z; Wu Z; Li Z; Zhang Z; Lin Y; Li P; Hu H
    Funct Integr Genomics; 2023 Jan; 23(1):46. PubMed ID: 36689018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of cervical cancer-related hub genes based on comprehensive bioinformatics analysis.
    Tu S; Zhang H; Yang X; Wen W; Song K; Yu X; Qu X
    Cancer Biomark; 2021; 32(3):303-315. PubMed ID: 34151839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel stromal biomarker screening in pancreatic cancer patients using the in vitro cancer-stromal interaction model.
    Nishida Y; Nagatsuma AK; Kojima M; Gotohda N; Ochiai A
    BMC Gastroenterol; 2020 Dec; 20(1):411. PubMed ID: 33297976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures.
    Zhang X; Wang Y; A G; Qu C; Chen J
    Front Immunol; 2021; 12():721030. PubMed ID: 34531868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pan-Cancer Analysis of Immune Cell Infiltration Identifies a Prognostic Immune-Cell Characteristic Score (ICCS) in Lung Adenocarcinoma.
    Zuo S; Wei M; Wang S; Dong J; Wei J
    Front Immunol; 2020; 11():1218. PubMed ID: 32714316
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.