BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36750366)

  • 1. SRSF7 and SRSF3 depend on RNA sequencing motifs and secondary structures to regulate Microprocessor.
    Le MN; Nguyen TD; Nguyen TA
    Life Sci Alliance; 2023 Apr; 6(4):. PubMed ID: 36750366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pri-miRNA cleavage assays for the Microprocessor complex.
    Le TN; Le CT; Nguyen TA
    Methods Enzymol; 2023; 692():217-230. PubMed ID: 37925180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation of Human Microprocessor on Primary MicroRNAs.
    Nguyen HM; Nguyen TD; Nguyen TL; Nguyen TA
    Biochemistry; 2019 Jan; 58(4):189-198. PubMed ID: 30481000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SRSF3 and SRSF7 modulate 3'UTR length through suppression or activation of proximal polyadenylation sites and regulation of CFIm levels.
    Schwich OD; Blümel N; Keller M; Wegener M; Setty ST; Brunstein ME; Poser I; Mozos IRL; Suess B; Münch C; McNicoll F; Zarnack K; Müller-McNicoll M
    Genome Biol; 2021 Mar; 22(1):82. PubMed ID: 33706811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of the Caenorhabditis elegans Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Nguyen TA
    Nucleic Acids Res; 2023 Feb; 51(4):1512-1527. PubMed ID: 36598924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative map of human primary microRNA processing sites.
    Kim K; Baek SC; Lee YY; Bastiaanssen C; Kim J; Kim H; Kim VN
    Mol Cell; 2021 Aug; 81(16):3422-3439.e11. PubMed ID: 34320405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural landscape of Microprocessor Mediated pri-
    Garg A; Shang R; Cvetanovic T; Lai EC; Joshua-Tor L
    bioRxiv; 2024 May; ():. PubMed ID: 38766155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulges control pri-miRNA processing in a position and strand-dependent manner.
    Li S; Le TN; Nguyen TD; Trinh TA; Nguyen TA
    RNA Biol; 2021 Nov; 18(11):1716-1726. PubMed ID: 33382955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SRSF3 shapes the structure of miR-17-92 cluster RNA and promotes selective processing of miR-17 and miR-20a.
    Ratnadiwakara M; Bahrudeen MN; Aikio E; Takabe P; Engel RM; Zahir Z; Jardé T; McMurrick PJ; Abud HE; Änkö ML
    EMBO Rep; 2023 Jul; 24(7):e56021. PubMed ID: 37306233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor.
    Li S; Nguyen TD; Nguyen TL; Nguyen TA
    Nat Commun; 2020 Apr; 11(1):1926. PubMed ID: 32317642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor.
    Nguyen TL; Nguyen TD; Bao S; Li S; Nguyen TA
    Nucleic Acids Res; 2020 Mar; 48(5):2579-2593. PubMed ID: 31956890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncanonical processing by animal Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Le TN; Nguyen TA
    Mol Cell; 2023 Jun; 83(11):1810-1826.e8. PubMed ID: 37267903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing.
    Kwon SC; Baek SC; Choi YG; Yang J; Lee YS; Woo JS; Kim VN
    Mol Cell; 2019 Feb; 73(3):505-518.e5. PubMed ID: 30554947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global identification of target recognition and cleavage by the Microprocessor in human ES cells.
    Seong Y; Lim DH; Kim A; Seo JH; Lee YS; Song H; Kwon YS
    Nucleic Acids Res; 2014 Nov; 42(20):12806-21. PubMed ID: 25326327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microprocessor activity controls differential miRNA biogenesis In Vivo.
    Conrad T; Marsico A; Gehre M; Orom UA
    Cell Rep; 2014 Oct; 9(2):542-54. PubMed ID: 25310978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoregulatory mechanisms controlling the microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2011; 700():56-66. PubMed ID: 21755473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for pri-miRNA Recognition by Drosha.
    Jin W; Wang J; Liu CP; Wang HW; Xu RM
    Mol Cell; 2020 May; 78(3):423-433.e5. PubMed ID: 32220645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a.
    Le CT; Nguyen TL; Nguyen TD; Nguyen TA
    RNA; 2020 Dec; 26(12):1777-1786. PubMed ID: 32994184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoregulatory mechanisms controlling the Microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2010; 700():56-66. PubMed ID: 21627030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.