BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36750372)

  • 1. Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server.
    Jung J; Popella L; Do PT; Pfau P; Vogel J; Barquist L
    RNA; 2023 May; 29(5):570-583. PubMed ID: 36750372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length.
    Doyle DF; Braasch DA; Simmons CG; Janowski BA; Corey DR
    Biochemistry; 2001 Jan; 40(1):53-64. PubMed ID: 11141056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic Escherichia coli.
    Popella L; Jung J; Do PT; Hayward RJ; Barquist L; Vogel J
    Nucleic Acids Res; 2022 Jun; 50(11):6435-6452. PubMed ID: 35687096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The translation start codon region is sensitive to antisense PNA inhibition in Escherichia coli.
    Dryselius R; Aswasti SK; Rajarao GK; Nielsen PE; Good L
    Oligonucleotides; 2003; 13(6):427-33. PubMed ID: 15025910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics.
    Popella L; Jung J; Popova K; Ðurica-Mitić S; Barquist L; Vogel J
    Nucleic Acids Res; 2021 May; 49(8):4705-4724. PubMed ID: 33849070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology.
    Hatamoto M; Ohashi A; Imachi H
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):397-402. PubMed ID: 20135118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis.
    Sénamaud-Beaufort C; Leforestier E; Saison-Behmoaras TE
    Oligonucleotides; 2003; 13(6):465-78. PubMed ID: 15025913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting essential genes in Salmonella enterica serovar typhimurium with antisense peptide nucleic acid.
    Soofi MA; Seleem MN
    Antimicrob Agents Chemother; 2012 Dec; 56(12):6407-9. PubMed ID: 23006748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative analysis of peptide-delivered antisense antibiotics using diverse nucleotide mimics.
    Ghosh C; Popella L; Dhamodharan V; Jung J; Dietzsch J; Barquist L; Höbartner C; Vogel J
    RNA; 2024 May; 30(6):624-643. PubMed ID: 38413166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and isoform-selective inhibition of cellular gene expression by peptide nucleic acids.
    Liu Y; Braasch DA; Nulf CJ; Corey DR
    Biochemistry; 2004 Feb; 43(7):1921-7. PubMed ID: 14967032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular antisense activity of peptide nucleic acid (PNAs) targeted to HIV-1 polypurine tract (PPT) containing RNA.
    Boutimah-Hamoudi F; Leforestier E; Sénamaud-Beaufort C; Nielsen PE; Giovannangeli C; Saison-Behmoaras TE
    Nucleic Acids Res; 2007; 35(12):3907-17. PubMed ID: 17537815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides.
    Oh SY; Ju Y; Park H
    Mol Cells; 2009 Oct; 28(4):341-5. PubMed ID: 19812898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids.
    Nekhotiaeva N; Awasthi SK; Nielsen PE; Good L
    Mol Ther; 2004 Oct; 10(4):652-9. PubMed ID: 15451449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of 5'-UTR RNA conformational switching in HIV-1 using antisense PNAs.
    Parkash B; Ranjan A; Tiwari V; Gupta SK; Kaur N; Tandon V
    PLoS One; 2012; 7(11):e49310. PubMed ID: 23152893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs).
    Nulf CJ; Corey D
    Nucleic Acids Res; 2004; 32(13):3792-8. PubMed ID: 15263060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense peptide nucleic acids conjugated to somatostatin analogs and targeted at the n-myc oncogene display enhanced cytotoxity to human neuroblastoma IMR32 cells expressing somatostatin receptors.
    Sun L; Fuselier JA; Murphy WA; Coy DH
    Peptides; 2002 Sep; 23(9):1557-65. PubMed ID: 12217415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids.
    Kulyté A; Nekhotiaeva N; Awasthi SK; Good L
    J Mol Microbiol Biotechnol; 2005; 9(2):101-9. PubMed ID: 16319499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bactericidal antisense effects of peptide-PNA conjugates.
    Good L; Awasthi SK; Dryselius R; Larsson O; Nielsen PE
    Nat Biotechnol; 2001 Apr; 19(4):360-4. PubMed ID: 11283595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide nucleic acid (PNA) antisense effects in Escherichia coli.
    Good L; Nielsen PE
    Curr Issues Mol Biol; 1999; 1(1-2):111-6. PubMed ID: 11475695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide nucleic acids as therapeutic agents.
    Nielsen PE
    Curr Opin Struct Biol; 1999 Jun; 9(3):353-7. PubMed ID: 10361091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.