These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 36751306)

  • 1. Optical coherence tomography.
    Bouma BE; de Boer JF; Huang D; Jang IK; Yonetsu T; Leggett CL; Leitgeb R; Sampson DD; Suter M; Vakoc B; Villiger M; Wojtkowski M
    Nat Rev Methods Primers; 2022; 2():. PubMed ID: 36751306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA).
    Laíns I; Wang JC; Cui Y; Katz R; Vingopoulos F; Staurenghi G; Vavvas DG; Miller JW; Miller JB
    Prog Retin Eye Res; 2021 Sep; 84():100951. PubMed ID: 33516833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography.
    Siddiqui M; Vakoc BJ
    Opt Express; 2012 Jul; 20(16):17938-51. PubMed ID: 23038343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma.
    Angmo D; Nongpiur ME; Sharma R; Sidhu T; Sihota R; Dada T
    Oman J Ophthalmol; 2016; 9(1):3-10. PubMed ID: 27013821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mirau-based line-field confocal optical coherence tomography for three-dimensional high-resolution skin imaging.
    Xue W; Ogien J; Bulkin P; Coutrot AL; Dubois A
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35962466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral Interferometry with Frequency Combs.
    Twayana K; Rebolledo-Salgado I; Deriushkina E; Schröder J; Karlsson M; Torres-Company V
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-based photoacoustic remote sensing microscopy and spectral-domain optical coherence tomography with a dual-function 1050-nm interrogation source.
    Martell M; Haven NJ; Zemp R
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34164968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier domain quantum optical coherence tomography.
    Kolenderska SM; Vanholsbeeck F; Kolenderski P
    Opt Express; 2020 Sep; 28(20):29576-29589. PubMed ID: 33114855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen.
    Alten F; Lauermann JL; Clemens CR; Heiduschka P; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2017 Dec; 255(12):2347-2355. PubMed ID: 28983695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images.
    Zhang A; Xi J; Liang W; Gao T; Li X
    Opt Lett; 2014 Aug; 39(15):4392-5. PubMed ID: 25078185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier-domain optical coherence tomography: recent advances toward clinical utility.
    Bouma BE; Yun SH; Vakoc BJ; Suter MJ; Tearney GJ
    Curr Opin Biotechnol; 2009 Feb; 20(1):111-8. PubMed ID: 19264475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry.
    Moore ED; McLeod RR
    Opt Express; 2008 Aug; 16(17):13139-49. PubMed ID: 18711552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral domain optical coherence tomography: a better OCT imaging strategy.
    Yaqoob Z; Wu J; Yang C
    Biotechniques; 2005 Dec; 39(6 Suppl):S6-13. PubMed ID: 20158503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.
    Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS
    Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.
    Lee SW; Song HW; Jung MY; Kim SH
    Opt Express; 2011 Oct; 19(22):21227-37. PubMed ID: 22108975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of image artefacts on phase conjugation with spectral domain optical coherence tomography.
    Kanngiesser J; Roth B
    Opt Express; 2020 Jun; 28(12):18224-18240. PubMed ID: 32680023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.
    Wojtkowski M; Srinivasan V; Ko T; Fujimoto J; Kowalczyk A; Duker J
    Opt Express; 2004 May; 12(11):2404-22. PubMed ID: 19475077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging.
    Jeon MY; Zhang J; Chen Z
    Opt Express; 2008 Mar; 16(6):3727-37. PubMed ID: 18542467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe.
    Wurster LM; Shah RN; Placzek F; Kretschmer S; Niederleithner M; Ginner L; Ensher J; Minneman MP; Hoover EE; Zappe H; Drexler W; Leitgeb RA; Ataman Ç
    J Biophotonics; 2019 Apr; 12(4):e201800382. PubMed ID: 30652423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.