These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36751571)

  • 1. The Importance of Diaphragmatic Function in Neuromuscular Expression in Patients With Chronic Heart Failure.
    Bordoni B; Escher AR
    Cureus; 2023 Feb; 15(2):e34629. PubMed ID: 36751571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology.
    Kelley RC; Ferreira LF
    Heart Fail Rev; 2017 Mar; 22(2):191-207. PubMed ID: 27000754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD(P)H oxidase subunit p47phox is elevated, and p47phox knockout prevents diaphragm contractile dysfunction in heart failure.
    Ahn B; Beharry AW; Frye GS; Judge AR; Ferreira LF
    Am J Physiol Lung Cell Mol Physiol; 2015 Sep; 309(5):L497-505. PubMed ID: 26209274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-molecule-mediated chemical knock-down of MuRF1/MuRF2 and attenuation of diaphragm dysfunction in chronic heart failure.
    Adams V; Bowen TS; Werner S; Barthel P; Amberger C; Konzer A; Graumann J; Sehr P; Lewis J; Provaznik J; Benes V; Büttner P; Gasch A; Mangner N; Witt CC; Labeit D; Linke A; Labeit S
    J Cachexia Sarcopenia Muscle; 2019 Oct; 10(5):1102-1115. PubMed ID: 31140761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in diaphragm strength and fatiguability in congestive heart failure.
    Supinski G; DiMarco A; Dibner-Dunlap M
    J Appl Physiol (1985); 1994 Jun; 76(6):2707-13. PubMed ID: 7928904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of resistive breathing on exercise capacity and diaphragm function in patients with ischaemic heart disease.
    Darnley GM; Gray AC; McClure SJ; Neary P; Petrie M; McMurray JJ; MacFarlane NG
    Eur J Heart Fail; 1999 Aug; 1(3):297-300. PubMed ID: 10935679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of aging on muscle blood flow in chronic heart failure.
    Eklund KE; Hageman KS; Poole DC; Musch TI
    J Appl Physiol (1985); 2005 Aug; 99(2):505-14. PubMed ID: 15802367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic Approaches in Mitochondrial Dysfunction, Proteolysis, and Structural Alterations of Diaphragm and Gastrocnemius in Rats With Chronic Heart Failure.
    Barreiro E; Puig-Vilanova E; Marin-Corral J; Chacón-Cabrera A; Salazar-Degracia A; Mateu X; Puente-Maestu L; García-Arumí E; Andreu AL; Molina L
    J Cell Physiol; 2016 Jul; 231(7):1495-513. PubMed ID: 26530247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral and respiratory muscles in chronic heart failure.
    Stassijns G; Lysens R; Decramer M
    Eur Respir J; 1996 Oct; 9(10):2161-7. PubMed ID: 8902483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Stress and stress tolerance in chronic heart failure].
    Hambrecht R
    Herz; 2002 Mar; 27(2):179-86. PubMed ID: 12025463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diaphragm dysfunction in heart failure is accompanied by increases in neutral sphingomyelinase activity and ceramide content.
    Empinado HM; Deevska GM; Nikolova-Karakashian M; Yoo JK; Christou DD; Ferreira LF
    Eur J Heart Fail; 2014 May; 16(5):519-25. PubMed ID: 24596158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm.
    Mangner N; Weikert B; Bowen TS; Sandri M; Höllriegel R; Erbs S; Hambrecht R; Schuler G; Linke A; Gielen S; Adams V
    J Cachexia Sarcopenia Muscle; 2015 Dec; 6(4):381-90. PubMed ID: 26674018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure.
    Glean AA; Ferguson SK; Holdsworth CT; Colburn TD; Wright JL; Fees AJ; Hageman KS; Poole DC; Musch TI
    Am J Physiol Heart Circ Physiol; 2015 Oct; 309(8):H1354-60. PubMed ID: 26371165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure.
    Laitano O; Ahn B; Patel N; Coblentz PD; Smuder AJ; Yoo JK; Christou DD; Adhihetty PJ; Ferreira LF
    J Appl Physiol (1985); 2016 Apr; 120(7):733-42. PubMed ID: 26846552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why does chronic heart failure cause breathlessness and fatigue?
    Witte KK; Clark AL
    Prog Cardiovasc Dis; 2007; 49(5):366-84. PubMed ID: 17329182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging and heart failure--similar syndromes of exercise intolerance? Implications for exercise-based interventions.
    Gielen S; Adams V; Niebauer J; Schuler G; Hambrecht R
    Heart Fail Monit; 2005; 4(4):130-6. PubMed ID: 16234900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does impaired O2 delivery during exercise accentuate central and peripheral fatigue in patients with coexistent COPD-CHF?
    Oliveira MF; Zelt JT; Jones JH; Hirai DM; O'Donnell DE; Verges S; Neder JA
    Front Physiol; 2014; 5():514. PubMed ID: 25610401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study.
    Gielen S; Sandri M; Kozarez I; Kratzsch J; Teupser D; Thiery J; Erbs S; Mangner N; Lenk K; Hambrecht R; Schuler G; Adams V
    Circulation; 2012 Jun; 125(22):2716-27. PubMed ID: 22565934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization.
    Hirai DM; Musch TI; Poole DC
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1419-39. PubMed ID: 26320036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure.
    Hwee DT; Kennedy AR; Hartman JJ; Ryans J; Durham N; Malik FI; Jasper JR
    J Pharmacol Exp Ther; 2015 Apr; 353(1):159-68. PubMed ID: 25678535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.