These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36751932)

  • 21. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data.
    Li C; Qin B; Gopinath A; Arratia PE; Thomases B; Guy RD
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033012. PubMed ID: 25871207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force-free swimming of a model helical flagellum in viscoelastic fluids.
    Liu B; Powers TR; Breuer KS
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19516-20. PubMed ID: 22106263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-sphere swimmer in a nonlinear viscoelastic medium.
    Curtis MP; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043006. PubMed ID: 23679512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An immersed boundary method for two-phase fluids and gels and the swimming of
    Lee P; Wolgemuth CW
    Phys Fluids (1994); 2016 Jan; 28(1):011901. PubMed ID: 26858520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locomotion of an efficient biomechanical sperm through viscoelastic medium.
    Asghar Z; Ali N; Waqas M; Nazeer M; Khan WA
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2271-2284. PubMed ID: 32462438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct numerical simulations of a microswimmer in a viscoelastic fluid.
    Kobayashi T; Jung G; Matsuoka Y; Nakayama Y; Molina JJ; Yamamoto R
    Soft Matter; 2023 Sep; 19(37):7109-7121. PubMed ID: 37694444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological benefits of collective swimming of sperm in a viscoelastic fluid.
    Phuyal S; Suarez SS; Tung CK
    Front Cell Dev Biol; 2022; 10():961623. PubMed ID: 36211471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A bead-spring model for running and tumbling of flagellated swimmers: detailed predictions compared to experimental data for E. coli.
    Kong M; Wu Y; Li G; Larson RG
    Soft Matter; 2015 Feb; 11(8):1572-81. PubMed ID: 25591165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting and Optimizing Microswimmer Performance from the Hydrodynamics of Its Components: The Relevance of Interactions.
    Giuliani N; Heltai L; DeSimone A
    Soft Robot; 2018 Aug; 5(4):410-424. PubMed ID: 29762082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis).
    Yuan J; Raizen DM; Bau HH
    J R Soc Interface; 2015 Aug; 12(109):20150227. PubMed ID: 26156298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers.
    Singh TS; Singh P; Yadava RDS
    Soft Matter; 2018 Sep; 14(37):7748-7758. PubMed ID: 30206610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Squirmer dynamics near a boundary.
    Ishimoto K; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062702. PubMed ID: 24483481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of drafting effects in swimming using computational fluid dynamics.
    Silva AJ; Rouboa A; Moreira A; Reis VM; Alves F; Vilas-Boas JP; Marinho DA
    J Sports Sci Med; 2008; 7(1):60-6. PubMed ID: 24150135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motion of microswimmers in cylindrical microchannels.
    Overberg FA; Gompper G; Fedosov DA
    Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives.
    Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T
    Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.