These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36751932)

  • 41. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives.
    Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T
    Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrodynamic interaction between two swimmers at low Reynolds number.
    Pooley CM; Alexander GP; Yeomans JM
    Phys Rev Lett; 2007 Nov; 99(22):228103. PubMed ID: 18233332
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient shapes for microswimming: From three-body swimmers to helical flagella.
    Bet B; Boosten G; Dijkstra M; van Roij R
    J Chem Phys; 2017 Feb; 146(8):084904. PubMed ID: 28249423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simplified computational model of possible hydrodynamic interactions between respiratory and swimming-related water flows in labriform-swimming fishes.
    Leung DB; Eldredge JD; Gordon MS
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33434901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes.
    Spagnolie SE; Liu B; Powers TR
    Phys Rev Lett; 2013 Aug; 111(6):068101. PubMed ID: 23971615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination.
    Liu Y; Zou Z; Pak OS; Tsang ACH
    Sci Rep; 2023 Jun; 13(1):9397. PubMed ID: 37296306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theory of swimming filaments in viscoelastic media.
    Fu HC; Powers TR; Wolgemuth CW
    Phys Rev Lett; 2007 Dec; 99(25):258101. PubMed ID: 18233558
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids.
    Kuron M; Stewart C; de Graaf J; Holm C
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):1. PubMed ID: 33555445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. General aspects of hydrodynamic interactions between three-sphere low-Reynolds-number swimmers.
    Farzin M; Ronasi K; Najafi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061914. PubMed ID: 23005134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Designing circle swimmers: Principles and strategies.
    Cao Z; Jiang H; Hou Z
    J Chem Phys; 2021 Dec; 155(23):234901. PubMed ID: 34937364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable formations of self-propelled fish-like swimmers induced by hydrodynamic interactions.
    Dai L; He G; Zhang X; Zhang X
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30333246
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.
    Lintuvuori JS; Würger A; Stratford K
    Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrodynamic profile of young swimmers: changes over a competitive season.
    Barbosa TM; Morais JE; Marques MC; Silva AJ; Marinho DA; Kee YH
    Scand J Med Sci Sports; 2015 Apr; 25(2):e184-96. PubMed ID: 24975756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. State diagram of a three-sphere microswimmer in a channel.
    Daddi-Moussa-Ider A; Lisicki M; Mathijssen AJTM; Hoell C; Goh S; Bławzdziewicz J; Menzel AM; Löwen H
    J Phys Condens Matter; 2018 Jun; 30(25):254004. PubMed ID: 29757157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Collision of microswimmers in a viscous fluid.
    Potomkin M; Gyrya V; Aranson I; Berlyand L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053005. PubMed ID: 23767618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Bayesian Framework to Estimate Fluid and Material Parameters in Micro-swimmer Models.
    Larson K; Olson SD; Matzavinos A
    Bull Math Biol; 2021 Jan; 83(3):23. PubMed ID: 33471225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrodynamics of confined active fluids.
    Brotto T; Caussin JB; Lauga E; Bartolo D
    Phys Rev Lett; 2013 Jan; 110(3):038101. PubMed ID: 23373953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.