BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36752733)

  • 41. Plasmonic Superstructure Arrays Fabricated by Laser Near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials.
    Bai S; Hu A; Hu Y; Ma Y; Obata K; Sugioka K
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air.
    Lafuente M; De Marchi S; Urbiztondo M; Pastoriza-Santos I; Pérez-Juste I; Santamaría J; Mallada R; Pina M
    ACS Sens; 2021 Jun; 6(6):2241-2251. PubMed ID: 34043325
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface-Nanostructured Single Silver Nanowire: A New One-Dimensional Microscale Surface-Enhanced Raman Scattering Interface.
    Chen M; Zhang H; Ge Y; Yang S; Wang P; Fang Y
    Langmuir; 2018 Dec; 34(50):15160-15165. PubMed ID: 30485107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS.
    Dey P; Baumann V; Rodríguez-Fernández J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32423172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-enhanced Raman scattering sensors for biomedical and molecular detection applications in space.
    Snitka V; Batiuskaite D; Bruzaite I; Lafont U; Butenko Y; Semprimoschnig C
    CEAS Space J; 2021; 13(3):509-520. PubMed ID: 34777619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmonic-polymer hybrid hollow microbeads for surface-enhanced Raman scattering (SERS) ultradetection.
    Trojanowska A; Pazos-Perez N; Panisello C; Gumi T; Guerrini L; Alvarez-Puebla RA
    J Colloid Interface Sci; 2015 Dec; 460():128-34. PubMed ID: 26319329
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments.
    Li R; Gui B; Mao H; Yang Y; Chen D; Xiong J
    ACS Sens; 2020 Nov; 5(11):3420-3431. PubMed ID: 32929960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA.
    Luo X; Zhu J; Jia W; Fang N; Wu P; Cai C; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18301-18313. PubMed ID: 33821612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Trace-Amount Detection of Chiral Molecules Based on Plasmonic Racemic Arrays Fabricated via Direct Laser Writing.
    Tan Y; Lu X; Ding T
    ACS Sens; 2024 Jun; 9(6):3290-3295. PubMed ID: 38832719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metasurface-Enhanced Raman Spectroscopy (mSERS) for Oriented Molecular Sensing.
    Zeng Y; Ananth R; Dill TJ; Rodarte A; Rozin MJ; Bradshaw N; Brown ER; Tao AR
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32598-32607. PubMed ID: 35816614
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance.
    Li H; Merkl P; Sommertune J; Thersleff T; Sotiriou GA
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201133. PubMed ID: 35670133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application.
    Goh MS; Lee YH; Pedireddy S; Phang IY; Tjiu WW; Tan JM; Ling XY
    Langmuir; 2012 Oct; 28(40):14441-9. PubMed ID: 22970778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gap-Dependent Surface-Enhanced Raman Scattering (SERS) Enhancement Model of SERS Substrate-Probe Combination Using a Polyelectrolyte Nanodroplet as a Distance Controller.
    Karn-Orachai K
    Langmuir; 2021 Sep; 37(36):10776-10785. PubMed ID: 34463518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering.
    Kneipp K; Kneipp H
    Beilstein J Nanotechnol; 2013; 4():834-42. PubMed ID: 24367752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.
    Khoury CG; Fales AM; Vo-Dinh T
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18157-64. PubMed ID: 27347606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micro-/nanostructures for surface-enhanced Raman spectroscopy: Recent advances and perspectives.
    Chen R; Li S; Ren S; Han D; Qin K; Jia X; Zhou H; Gao Z
    Adv Colloid Interface Sci; 2024 Jun; 331():103235. PubMed ID: 38908042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.