These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36752733)

  • 81. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.
    Bi X; Li X; Chen D; Du X
    ACS Appl Mater Interfaces; 2016 May; 8(17):10683-9. PubMed ID: 27064515
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering.
    Dos Santos DP; Temperini MLA; Brolo AG
    Acc Chem Res; 2019 Feb; 52(2):456-464. PubMed ID: 30668089
    [TBL] [Abstract][Full Text] [Related]  

  • 83. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface.
    Long Z; Liang Y; Feng L; Zhang H; Liu M; Xu T
    Nanoscale; 2020 May; 12(19):10809-10815. PubMed ID: 32392273
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries.
    Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD
    Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA.
    Li M; Cushing SK; Liang H; Suri S; Ma D; Wu N
    Anal Chem; 2013 Feb; 85(4):2072-8. PubMed ID: 23320458
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Flexible Substrate of Cellulose Fiber/Structured Plasmonic Silver Nanoparticles Applied for Label-Free SERS Detection of Malathion.
    Serebrennikova KV; Komova NS; Aybush AV; Zherdev AV; Dzantiev BB
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837103
    [TBL] [Abstract][Full Text] [Related]  

  • 88. SERS Sensing Using Graphene-Covered Silver Nanoparticles and Metamaterials for the Detection of Thiram in Soil.
    Shafi M; Duan P; Liu W; Zhang W; Zhang C; Hu X; Zha Z; Liu R; Liu C; Jiang S; Man B; Liu M
    Langmuir; 2022 Dec; 38(51):16183-16193. PubMed ID: 36520051
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Enantioselective optical trapping of single chiral molecules in the superchiral field vicinity of metal nanostructures.
    Yamane H; Yokoshi N; Ishihara H; Oka H
    Opt Express; 2023 Apr; 31(9):13708-13723. PubMed ID: 37157253
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays.
    Hong KY; Brolo AG
    Anal Chim Acta; 2017 Jun; 972():73-80. PubMed ID: 28495098
    [TBL] [Abstract][Full Text] [Related]  

  • 91. An in situ approach for facile fabrication of robust and scalable SERS substrates.
    Wang YC; DuChene JS; Huo F; Wei WD
    Nanoscale; 2014 Jul; 6(13):7232-6. PubMed ID: 24896881
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Bimetallic Gold Nanostars Having High Aspect Ratio Spikes for Sensitive Surface-Enhanced Raman Scattering Sensing.
    Atta S; Vo-Dinh T
    ACS Appl Nano Mater; 2022 Sep; 5(9):12562-12570. PubMed ID: 36185168
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping.
    Chaudhari K; Ahuja T; Murugesan V; Subramanian V; Ganayee MA; Thundat T; Pradeep T
    Nanoscale; 2018 Dec; 11(1):321-330. PubMed ID: 30534777
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection.
    Chen S; Li Q; Tian D; Ke P; Yang X; Wu Q; Chen J; Hu C; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121030. PubMed ID: 35189488
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Universal Fabrication of Highly Efficient Plasmonic Thin-Films for Label-Free SERS Detection.
    Gullace S; Montes-García V; Martín V; Larios D; Girelli Consolaro V; Obelleiro F; Calogero G; Casalini S; Samorì P
    Small; 2021 Aug; 17(33):e2100755. PubMed ID: 34288390
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Near-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide.
    Fu M; Mota MPDP; Xiao X; Jacassi A; Güsken NA; Chen Y; Xiao H; Li Y; Riaz A; Maier SA; Oulton RF
    Nat Nanotechnol; 2022 Dec; 17(12):1251-1257. PubMed ID: 36302960
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures.
    Ly NH; Son SJ; Jang S; Lee C; Lee JI; Joo SW
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685057
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration.
    Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A
    Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO
    Wen S; Su Y; Wu R; Zhou S; Min Q; Fan GC; Jiang LP; Song RB; Zhu JJ
    Biosens Bioelectron; 2018 Oct; 117():260-266. PubMed ID: 29909197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.