These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36753400)

  • 1. A Systematic Study on the Redox Potentials of Phenazine-Derivatives in Aqueous Media: A Combined Computational and Experimental Work.
    de la Cruz C; Sanz R; Suárez A; Ventosa E; Marcilla R; Mavrandonakis A
    ChemSusChem; 2023 Apr; 16(8):e202201984. PubMed ID: 36753400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the Redox Potentials of Phenazine Derivatives Using DFT-Assisted Machine Learning.
    Ghule S; Dash SR; Bagchi S; Joshi K; Vanka K
    ACS Omega; 2022 Apr; 7(14):11742-11755. PubMed ID: 35449912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.
    Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Amino Acid Functionalized Phenazine Flow Batteries with Long Lifetime at Near-Neutral pH.
    Pang S; Wang X; Wang P; Ji Y
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5289-5298. PubMed ID: 33247882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators.
    Chen JJ; Chen W; He H; Li DB; Li WW; Xiong L; Yu HQ
    Environ Sci Technol; 2013 Jan; 47(2):1033-9. PubMed ID: 23244024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory.
    Bachman JE; Curtiss LA; Assary RS
    J Phys Chem A; 2014 Sep; 118(38):8852-60. PubMed ID: 25159500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Redox-Active Triazenyl-Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries.
    Back J; Kwon G; Byeon JE; Song H; Kang K; Lee E
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37338-37345. PubMed ID: 32692157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New phenazine based anolyte material for high voltage organic redox flow batteries.
    Romadina EI; Komarov DS; Stevenson KJ; Troshin PA
    Chem Commun (Camb); 2021 Mar; 57(24):2986-2989. PubMed ID: 33634297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.
    Tracy JS; Horst ES; Roytman VA; Toste FD
    Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte.
    Hu B; Luo J; Hu M; Yuan B; Liu TL
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries.
    Sevov CS; Fisher SL; Thompson LT; Sanford MS
    J Am Chem Soc; 2016 Nov; 138(47):15378-15384. PubMed ID: 27933936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries.
    Tang G; Liu Y; Li Y; Peng K; Zuo P; Yang Z; Xu T
    JACS Au; 2022 May; 2(5):1214-1222. PubMed ID: 35647585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent Pattern Effects on the Redox Potentials of Quinone-Based Active Materials for Aqueous Redox Flow Batteries.
    Schwan S; Schröder D; Wegner HA; Janek J; Mollenhauer D
    ChemSusChem; 2020 Oct; 13(20):5480-5488. PubMed ID: 32798240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the Performance of Aqueous Organic Redox Flow Batteries via First-Principles Calculations.
    Yu J; Zhao TS; Pan D
    J Phys Chem Lett; 2020 Dec; 11(24):10433-10438. PubMed ID: 33269931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage.
    Zhang X; Liu X; Zhang H; Wang Z; Zhang Y; Li G; Li MJ; He G
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48727-48733. PubMed ID: 36257057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.