BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36753552)

  • 1. The binding mode of orphan glycyl-tRNA synthetase with tRNA supports the synthetase classification and reveals large domain movements.
    Han L; Luo Z; Ju Y; Chen B; Zou T; Wang J; Xu J; Gu Q; Yang XL; Schimmel P; Zhou H
    Sci Adv; 2023 Feb; 9(6):eadf1027. PubMed ID: 36753552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structures of the α-subunit of the α(2)β (2) tetrameric Glycyl-tRNA synthetase.
    Tan K; Zhou M; Zhang R; Anderson WF; Joachimiak A
    J Struct Funct Genomics; 2012 Dec; 13(4):233-9. PubMed ID: 23054484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of tRNA recognition by heterotetrameric glycyl-tRNA synthetase from lactic acid bacteria.
    Nagato Y; Yamashita S; Ohashi A; Furukawa H; Takai K; Tomita K; Tomikawa C
    J Biochem; 2023 Jul; 174(3):291-303. PubMed ID: 37261968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of a two-step tRNA recognition mechanism for plastid glycyl-tRNA synthetase.
    Yu Z; Wu Z; Li Y; Hao Q; Cao X; Blaha GM; Lin J; Lu G
    Nucleic Acids Res; 2023 May; 51(8):4000-4011. PubMed ID: 36912079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.
    Arnez JG; Dock-Bregeon AC; Moras D
    J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycyl-tRNA synthetase.
    Freist W; Logan DT; Gauss DH
    Biol Chem Hoppe Seyler; 1996 Jun; 377(6):343-56. PubMed ID: 8839980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.
    Dewan V; Reader J; Forsyth KM
    Top Curr Chem; 2014; 344():293-329. PubMed ID: 23666077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases.
    Wei N; Zhang Q; Yang XL
    J Biol Chem; 2019 Apr; 294(14):5321-5339. PubMed ID: 30643024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications.
    Ju Y; Han L; Chen B; Luo Z; Gu Q; Xu J; Yang XL; Schimmel P; Zhou H
    Nucleic Acids Res; 2021 Sep; 49(17):10106-10119. PubMed ID: 34390350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of aminoacyl-tRNA synthetase catalytic core to carrier protein aminoacylation.
    Mocibob M; Ivic N; Luic M; Weygand-Durasevic I
    Structure; 2013 Apr; 21(4):614-26. PubMed ID: 23541895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events.
    Wolf YI; Aravind L; Grishin NV; Koonin EV
    Genome Res; 1999 Aug; 9(8):689-710. PubMed ID: 10447505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation.
    Qin X; Hao Z; Tian Q; Zhang Z; Zhou C; Xie W
    J Biol Chem; 2014 Jul; 289(29):20359-69. PubMed ID: 24898252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putting amino acids onto tRNAs: The aminoacyl-tRNA synthetases as catalysts.
    Alexander RW; Hendrickson TL
    Enzymes; 2020; 48():39-68. PubMed ID: 33837710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.
    Mocibob M; Ivic N; Bilokapic S; Maier T; Luic M; Ban N; Weygand-Durasevic I
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14585-90. PubMed ID: 20663952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase.
    Cusack S; Yaremchuk A; Krikliviy I; Tukalo M
    Structure; 1998 Jan; 6(1):101-8. PubMed ID: 9493271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-Specific Domains and Fragmented Sequences Imply Non-Canonical Functions in Plant Aminoacyl-tRNA Synthetases.
    Saga Y; Kawashima M; Sakai S; Yamazaki K; Kaneko M; Takahashi M; Sato N; Toyoda Y; Takase S; Nakano T; Kawakami N; Kushiro T
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32906706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoacyl-tRNA Synthetases in the Bacterial World.
    Giegé R; Springer M
    EcoSal Plus; 2016 May; 7(1):. PubMed ID: 27223819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases.
    Banik SD; Nandi N
    J Biomol Struct Dyn; 2012; 30(6):701-15. PubMed ID: 22731388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminoacyl-tRNA Synthetase Evolution within the Dynamic Tripartite Translation System of Plant Cells.
    Sloan DB; DeTar RA; Warren JM
    Genome Biol Evol; 2023 Apr; 15(4):. PubMed ID: 36951086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of tRNAs by aminoacyl-tRNA synthetases.
    Cavarelli J; Moras D
    FASEB J; 1993 Jan; 7(1):79-86. PubMed ID: 8422978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.