These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36753607)
1. Control of the Reaction Kinetics of Monodispersed InP/ZnSeS Ali A; Jiang W; Choi Y; Kim B; Lee K; Chae H J Phys Chem Lett; 2023 Feb; 14(6):1656-1662. PubMed ID: 36753607 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands. Lee W; Lee C; Kim B; Choi Y; Chae H Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33143226 [TBL] [Abstract][Full Text] [Related]
3. Bright InP Quantum Dots by Mid-Synthetic Modification with Zinc Halides. Hu HL; Hao H; Ren X; Chen ZY; Liu M; Liu Y; Jiang FL Inorg Chem; 2023 Feb; 62(6):2877-2886. PubMed ID: 36723932 [TBL] [Abstract][Full Text] [Related]
4. Phenethylamine ligand engineering of red InP quantum dots for improving the efficiency of quantum dot light-emitting diodes. Jiang W; Kim B; Chae H Opt Lett; 2020 Oct; 45(20):5800-5803. PubMed ID: 33057288 [TBL] [Abstract][Full Text] [Related]
5. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes. Jang EP; Yang H J Nanosci Nanotechnol; 2013 Sep; 13(9):6011-5. PubMed ID: 24205590 [TBL] [Abstract][Full Text] [Related]
6. High-efficiency red electroluminescent device based on multishelled InP quantum dots. Jo JH; Kim JH; Lee KH; Han CY; Jang EP; Do YR; Yang H Opt Lett; 2016 Sep; 41(17):3984-7. PubMed ID: 27607953 [TBL] [Abstract][Full Text] [Related]
7. The Narrow Synthetic Window for Highly Homogenous InP Quantum Dots toward Narrow Red Emission. Hu R; He F; Hou R; Wu Z; Zhang X; Shen H Inorg Chem; 2024 Feb; 63(7):3516-3524. PubMed ID: 38316130 [TBL] [Abstract][Full Text] [Related]
8. Study of the Interfacial Oxidation of InP Quantum Dots Synthesized from Tris(dimethylamino)phosphine. Duan X; Ma J; Zhang W; Liu P; Liu H; Hao J; Wang K; Samuelson L; Sun XW ACS Appl Mater Interfaces; 2023 Jan; 15(1):1619-1628. PubMed ID: 36574641 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Yu P; Cao S; Shan Y; Bi Y; Hu Y; Zeng R; Zou B; Wang Y; Zhao J Light Sci Appl; 2022 May; 11(1):162. PubMed ID: 35637219 [TBL] [Abstract][Full Text] [Related]
10. Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes. Sun Z; Wu Q; Wang S; Cao F; Wang Y; Li L; Wang H; Kong L; Yan L; Yang X ACS Appl Mater Interfaces; 2022 Apr; 14(13):15401-15406. PubMed ID: 35316038 [TBL] [Abstract][Full Text] [Related]
11. Trioctylphosphine accelerated growth of InP quantum dots at low temperature. Zhang X; Lv H; Xing W; Li Y; Geng C; Xu S Nanotechnology; 2021 Nov; 33(5):. PubMed ID: 34670196 [TBL] [Abstract][Full Text] [Related]
12. Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes. Ham KM; Kim M; Bock S; Kim J; Kim W; Jung HS; An J; Song H; Kim JW; Kim HM; Rho WY; Lee SH; Park SM; Kim DE; Jun BH Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142888 [TBL] [Abstract][Full Text] [Related]
13. Photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots by plasmonic nanostructures. Kulakovich O; Gurinovich L; Li H; Ramanenka A; Trotsiuk L; Muravitskaya A; Wei J; Li H; Matveevskaya N; Guzatov DV; Gaponenko S Nanotechnology; 2021 Jan; 32(3):035204. PubMed ID: 33007765 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192 [TBL] [Abstract][Full Text] [Related]
15. Tuning the Shades of Red Emission in InP/ZnSe/ZnS Nanocrystals with Narrow Full Width for Fabrication of Light-Emitting Diodes. Soheyli E; Biçer A; Ozel SS; Sahin Tiras K; Mutlugun E ACS Omega; 2023 Oct; 8(42):39690-39698. PubMed ID: 37901544 [TBL] [Abstract][Full Text] [Related]
16. High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness. Zhang H; Ma X; Lin Q; Zeng Z; Wang H; Li LS; Shen H; Jia Y; Du Z J Phys Chem Lett; 2020 Feb; 11(3):960-967. PubMed ID: 31957438 [TBL] [Abstract][Full Text] [Related]
17. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications. Ramasamy P; Kim B; Lee MS; Lee JS Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861 [TBL] [Abstract][Full Text] [Related]
18. Transition Layer Assisted Synthesis of Defect Free Amine-Phosphine Based InP QDs. Wang J; Ba G; Meng J; Yang S; Tian S; Zhang M; Huang F; Zheng K; Pullerits T; Tian J Nano Lett; 2024 Jul; 24(29):8894-8901. PubMed ID: 38990690 [TBL] [Abstract][Full Text] [Related]
19. Deep Blue and Highly Emissive ZnS-Passivated InP QDs: Facile Synthesis, Characterization, and Deciphering of Their Ultrafast-to-Slow Photodynamics. Rakshit S; Cohen B; Gutiérrez M; El-Ballouli AO; Douhal A ACS Appl Mater Interfaces; 2023 Jan; 15(2):3099-3111. PubMed ID: 36608171 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of Monodisperse InP Quantum Dots: Use of an Acid-Free Indium Carboxylate Precursor. Angelé L; Dreyfuss S; Dubertret B; Mézailles N Inorg Chem; 2021 Feb; 60(4):2271-2278. PubMed ID: 33502849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]