These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36753622)

  • 1. Structural and Functional Characterization of
    Sharma S; Jayasinghe YP; Mishra NK; Orimoloye MO; Wong TY; Dalluge JJ; Ronning DR; Aldrich CC
    ACS Infect Dis; 2023 Mar; 9(3):540-553. PubMed ID: 36753622
    [No Abstract]   [Full Text] [Related]  

  • 2. Purification and properties of homoserine transacetylase from Bacillus polymyxa.
    Wyman A; Paulus H
    J Biol Chem; 1975 May; 250(10):3897-903. PubMed ID: 1126938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis.
    Zubieta C; Arkus KA; Cahoon RE; Jez JM
    J Biol Chem; 2008 Mar; 283(12):7561-7. PubMed ID: 18216013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase.
    Born TL; Franklin M; Blanchard JS
    Biochemistry; 2000 Jul; 39(29):8556-64. PubMed ID: 10913262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase.
    Goudarzi M; Born TL
    Extremophiles; 2006 Oct; 10(5):469-78. PubMed ID: 16708165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MetA (Rv3341) from Mycobacterium tuberculosis H37Rv strain exhibits substrate dependent dual role of transferase and hydrolase activity.
    Maurya B; Pochet L; Wouters J; Colaço M; Misquith S
    Biochimie; 2020 Dec; 179():113-126. PubMed ID: 32976971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of fungal homoserine transacetylase.
    Nazi I; Wright GD
    Biochemistry; 2005 Oct; 44(41):13560-6. PubMed ID: 16216079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure and biochemical characterization of O-acetylhomoserine acetyltransferase from Mycobacterium smegmatis ATCC 19420.
    Sagong HY; Hong J; Kim KJ
    Biochem Biophys Res Commun; 2019 Sep; 517(3):399-406. PubMed ID: 31378370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Subfamily Esterase with a Homoserine Transacetylase-like Fold but No Transferase Activity.
    Li PY; Yao QQ; Wang P; Zhang Y; Li Y; Zhang YQ; Hao J; Zhou BC; Chen XL; Shi M; Zhang YZ; Zhang XY
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of mycobacterial homoserine transacetylases central to methionine biosynthesis reveals druggable active site.
    Chaton CT; Rodriguez ES; Reed RW; Li J; Kenner CW; Korotkov KV
    Sci Rep; 2019 Dec; 9(1):20267. PubMed ID: 31889085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-bound crystal structures reveal features unique to Mycobacterium tuberculosis N-acetyl-glucosamine 1-phosphate uridyltransferase and a catalytic mechanism for acetyl transfer.
    Jagtap PK; Soni V; Vithani N; Jhingan GD; Bais VS; Nandicoori VK; Prakash B
    J Biol Chem; 2012 Nov; 287(47):39524-37. PubMed ID: 22969087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents.
    De Pascale G; Nazi I; Harrison PH; Wright GD
    J Antibiot (Tokyo); 2011 Jul; 64(7):483-7. PubMed ID: 21522158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the substrate binding mechanism of novel ArgA from Mycobacterium tuberculosis.
    Das U; Singh E; Dharavath S; Tiruttani Subhramanyam UK; Pal RK; Vijayan R; Menon S; Kumar S; Gourinath S; Srinivasan A
    Int J Biol Macromol; 2019 Mar; 125():970-978. PubMed ID: 30576731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of small molecules targeting homoserine acetyl transferase from Mycobacterium tuberculosis and Staphylococcus aureus.
    Chaudhary D; Singh A; Marzuki M; Ghosh A; Kidwai S; Gosain TP; Chawla K; Gupta SK; Agarwal N; Saha S; Kumar Y; Thakur KG; Singhal A; Singh R
    Sci Rep; 2022 Aug; 12(1):13801. PubMed ID: 35963878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of homoserine transacetylase as a new target for antifungal agents.
    Nazi I; Scott A; Sham A; Rossi L; Williamson PR; Kronstad JW; Wright GD
    Antimicrob Agents Chemother; 2007 May; 51(5):1731-6. PubMed ID: 17353245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.
    Berney M; Berney-Meyer L; Wong KW; Chen B; Chen M; Kim J; Wang J; Harris D; Parkhill J; Chan J; Wang F; Jacobs WR
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):10008-13. PubMed ID: 26221021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli.
    Wei L; Wang Q; Xu N; Cheng J; Zhou W; Han G; Jiang H; Liu J; Ma Y
    ACS Synth Biol; 2019 May; 8(5):1153-1167. PubMed ID: 30973696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of homoserine transacetylase from Haemophilus influenzae reveals a new family of alpha/beta-hydrolases.
    Mirza IA; Nazi I; Korczynska M; Wright GD; Berghuis AM
    Biochemistry; 2005 Dec; 44(48):15768-73. PubMed ID: 16313180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of methionine-auxotroph
    Gabay M; Stern I; Gruzdev N; Cohen A; Adriana-Lifshits L; Ansbacher T; Yadid I; Gal M
    Metab Eng Commun; 2024 Jun; 18():e00236. PubMed ID: 38779352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel esterase subfamily with α/β-hydrolase fold suggested by structures of two bacterial enzymes homologous to L-homoserine O-acetyl transferases.
    Tölzer C; Pal S; Watzlawick H; Altenbuchner J; Niefind K
    FEBS Lett; 2016 Jan; 590(1):174-84. PubMed ID: 26787467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.