These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36753682)
1. Trifunctional Microgel-Mediated Preparation and Toughening of Printable High-Performance Chitosan Hydrogels for Underwater Communications. Wang B; Liu J; Zhang P; Wei H; Yu Y ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753682 [TBL] [Abstract][Full Text] [Related]
2. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Wei H; Lei M; Zhang P; Leng J; Zheng Z; Yu Y Nat Commun; 2021 Apr; 12(1):2082. PubMed ID: 33828100 [TBL] [Abstract][Full Text] [Related]
3. Customizable Low-Friction Tough Hydrogels for Potential Cartilage Tissue Engineering by a Rapid Orthogonal Photoreactive 3D-Printing Design. Cheng B; Li C; Zhang B; Liu J; Lu Z; Zhang P; Wei H; Yu Y ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36893430 [TBL] [Abstract][Full Text] [Related]
4. 3D printed microstructured ultra-sensitive pressure sensors based on microgel-reinforced double network hydrogels for biomechanical applications. Zheng J; Chen G; Yang H; Zhu C; Li S; Wang W; Ren J; Cong Y; Xu X; Wang X; Fu J Mater Horiz; 2023 Oct; 10(10):4232-4242. PubMed ID: 37530138 [TBL] [Abstract][Full Text] [Related]
6. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679 [TBL] [Abstract][Full Text] [Related]
7. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications. Deng Z; Qian T; Hang F ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594 [TBL] [Abstract][Full Text] [Related]
8. A pH and Temperature Dual-Responsive Microgel-Embedded, Adhesive, and Tough Hydrogel for Drug Delivery and Wound Healing. Peng X; Peng Q; Wu M; Wang W; Gao Y; Liu X; Sun Y; Yang D; Peng Q; Wang T; Chen XZ; Liu J; Zhang H; Zeng H ACS Appl Mater Interfaces; 2023 Apr; 15(15):19560-19573. PubMed ID: 37036950 [TBL] [Abstract][Full Text] [Related]
9. Tough hybrid microgel-reinforced hydrogels dependent on the size and modulus of the microgels. Li C; Zhou X; Zhu L; Xu Z; Tan P; Wang H; Chen G; Zhou X Soft Matter; 2021 Feb; 17(6):1566-1573. PubMed ID: 33346314 [TBL] [Abstract][Full Text] [Related]
10. Jammed Microgel-Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations. Moon D; Lee MG; Sun JY; Song KH; Doh J Macromol Rapid Commun; 2022 Oct; 43(19):e2200271. PubMed ID: 35686322 [TBL] [Abstract][Full Text] [Related]
11. Influence of the Degree of Swelling on the Stiffness and Toughness of Microgel-Reinforced Hydrogels. Kessler M; Yuan T; Kolinski JM; Amstad E Macromol Rapid Commun; 2023 Aug; 44(16):e2200864. PubMed ID: 36809684 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Polymerization Acceleration and Mechanical Enhancement for Printing a Biomimetic PEDOT Adhesive by Coordinative and Orthogonal Ruthenium Photochemistry. Xiao W; Liu J; Lu Z; Zhang P; Wei H; Yu Y ACS Macro Lett; 2023 Apr; 12(4):433-439. PubMed ID: 36930947 [TBL] [Abstract][Full Text] [Related]
14. Microgel-integrated, high-strength in-situ formed hydrogel enables timely emergency trauma treatment. Yu J; Li X; Chen N; Xue S; Zhao J; Li S; Hou X; Yuan X Colloids Surf B Biointerfaces; 2022 Jul; 215():112508. PubMed ID: 35468430 [TBL] [Abstract][Full Text] [Related]
15. Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds. Wang C; Zhang P; Xiao W; Zhao J; Shi M; Wei H; Deng Z; Guo B; Zheng Z; Yu Y Nat Commun; 2020 Oct; 11(1):4694. PubMed ID: 33020471 [TBL] [Abstract][Full Text] [Related]
16. Does the Size of Microgels Influence the Toughness of Microgel-Reinforced Hydrogels? Kessler M; Nassisi Q; Amstad E Macromol Rapid Commun; 2022 Aug; 43(15):e2200196. PubMed ID: 35467048 [TBL] [Abstract][Full Text] [Related]
17. Chitosan Hydrogels with Embedded Thermo- and pH-Responsive Microgels as a Potential Carrier for Controlled Release of Drugs. Singh N; Aery S; Juneja S; Kumari L; Lone MS; Dar AA; Pawar SV; Mehta SK; Dan A ACS Appl Bio Mater; 2022 Jul; 5(7):3487-3499. PubMed ID: 35729496 [TBL] [Abstract][Full Text] [Related]
18. Ligand Dissociation of Metal-Complex Photocatalysts toward pH-Photomanipulation in Dynamic Covalent Hydrogels for Printing Reprocessable and Recyclable Devices. Wang Q; Zhu Z; Liu J; Lu Z; Zhao Y; Yu Y ACS Macro Lett; 2024 Jun; 13(6):664-672. PubMed ID: 38755098 [TBL] [Abstract][Full Text] [Related]
19. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
20. Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Lai PC; Yu SS Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33668913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]