These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36753867)

  • 1. Structural evolution of CL-20/DNB cocrystals at high temperature: Phase transition and kinetics of thermal decomposition.
    Sun X; Liang W; Li X; Mai D; Zhang Y; Sui Z; Dai R; Zheng X; Wang Z; Duan X; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122436. PubMed ID: 36753867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent decomposition of the CL-20/MTNP cocrystal after phase separation.
    Yang F; Yang Z; Yu Q; Liu Z; Li G; Zhao C; Tian Y
    Phys Chem Chem Phys; 2024 Mar; 26(10):8547-8558. PubMed ID: 38412456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isothermal structural evolution of CL-20/HMX cocrystals under slow roasting at 190 °C.
    Liang W; Sun X; Wang H; Wang J; Sui Z; Ren H; Dai R; Zheng X; Wang Z; Duan X; Zhang Z
    Phys Chem Chem Phys; 2023 Jun; 25(23):15756-15766. PubMed ID: 37254560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Thermal escape" of MTNP: the phase separation of CL-20/MTNP cocrystals under long-term heating.
    Yang F; Yang Z; Yu Q; Li G; Zhao C; Tian Y
    Phys Chem Chem Phys; 2023 Mar; 25(9):6838-6846. PubMed ID: 36794494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, preparation, characterization and formation mechanism of a novel kinetic CL-20-based cocrystal.
    Sun S; Zhang H; Xu J; Wang H; Wang S; Yu Z; Zhu C; Sun J
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Jun; 75(Pt 3):310-317. PubMed ID: 32830652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and DFT simulation study of a novel felodipine cocrystal: Characterization, dissolving properties and thermal decomposition kinetics.
    Yang C; Guo W; Lin Y; Lin Q; Wang J; Wang J; Zeng Y
    J Pharm Biomed Anal; 2018 May; 154():198-206. PubMed ID: 29550709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of the structures and properties of CL-20/DNB cocrystal and associated PBXs by molecular dynamics simulation.
    Hang GY; Yu WL; Wang T; Li Z
    J Mol Model; 2018 Mar; 24(4):97. PubMed ID: 29556732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Characterization of Nano-CL-20/TNT Cocrystal Explosives by Mechanical Ball-Milling Method.
    Hu Y; Yuan S; Li X; Liu M; Sun F; Yang Y; Hao G; Jiang W
    ACS Omega; 2020 Jul; 5(28):17761-17766. PubMed ID: 32724868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization.
    Basavoju S; Boström D; Velaga SP
    Pharm Res; 2008 Mar; 25(3):530-41. PubMed ID: 17703346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition mechanism scenarios of CL-20 co-crystals revealed by ReaxFF molecular dynamics: similarities and differences.
    Ren C; Liu H; Li X; Guo L
    Phys Chem Chem Phys; 2020 Feb; 22(5):2827-2840. PubMed ID: 31965130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance.
    Pang WQ; Wang K; Zhang W; Luca LT; Fan XZ; Li JQ
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32962224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential.
    Feng RZ; Zhang SH; Ren FD; Gou RJ; Gao L
    J Mol Model; 2016 Jun; 22(6):123. PubMed ID: 27168198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.
    Sun H; Vaghjiani GL
    J Chem Phys; 2015 May; 142(20):204301. PubMed ID: 26026441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-density HNIW/TNT cocrystal synthesized using a green chemical method.
    Liu Y; An C; Luo J; Wang J
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2018 Aug; 74(Pt 4):385-393. PubMed ID: 30141424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel energetic cocrystal composed of CL-20 and 1-methyl-2,4,5-trinitroimidazole with high energy and low sensitivity.
    Lian P; Zhang L; Su H; Chen J; Chen L; Wang J
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2022 Apr; 78(Pt 2):133-139. PubMed ID: 35411852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the Impact-Sensitivity Reduction of Energetic CL-20/TNT Cocrystals: A Nonequilibrium Molecular Dynamics Study.
    Wang F; Du G; Zhang C; Wang QY
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the Formation of Cocrystal and Salt of Tenoxicam from the Isomer and Conformation.
    Xie Y; Yuan P; Heng T; Du L; An Q; Zhang B; Zhang L; Yang D; Du G; Lu Y
    Pharmaceutics; 2022 Sep; 14(9):. PubMed ID: 36145717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature dependence on the THz spectrum of CL-20/TNT energetic cocrystal by molecular dynamics simulations.
    Shi L; Duan XH; Zhu LG; Pei CH
    J Mol Model; 2020 Jan; 26(2):25. PubMed ID: 31927630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of electric field on decomposition of CL-20/HMX cocrystal: A reactive molecular dynamics study.
    Zhang J; Guo W
    J Comput Chem; 2021 Dec; 42(31):2202-2212. PubMed ID: 34476813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Molecular Dynamic Simulation of Superfine CL-20/TNT Cocrystal Based on the Opposite Spray Method.
    Yuan J; Liu Z; Han T; Li J; Han P; Wang J
    Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.