These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36753924)

  • 21. SAD--a normalized structural alignment database: improving sequence-structure alignments.
    Marsden B; Abagyan R
    Bioinformatics; 2004 Oct; 20(15):2333-44. PubMed ID: 15087320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the reliability and the limits of inference of amino acid sequence alignments.
    Rajapaksa S; Sumanaweera D; Lesk AM; Allison L; Stuckey PJ; Garcia de la Banda M; Abramson D; Konagurthu AS
    Bioinformatics; 2022 Jun; 38(Suppl 1):i255-i263. PubMed ID: 35758808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leveraging protein language models for accurate multiple sequence alignments.
    McWhite CD; Armour-Garb I; Singh M
    Genome Res; 2023 Jul; 33(7):1145-1153. PubMed ID: 37414576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DAFS: simultaneous aligning and folding of RNA sequences via dual decomposition.
    Sato K; Kato Y; Akutsu T; Asai K; Sakakibara Y
    Bioinformatics; 2012 Dec; 28(24):3218-24. PubMed ID: 23060618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple sequence alignment by conformational space annealing.
    Joo K; Lee J; Kim I; Lee SJ; Lee J
    Biophys J; 2008 Nov; 95(10):4813-9. PubMed ID: 18689453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. End-to-end learning of multiple sequence alignments with differentiable Smith-Waterman.
    Petti S; Bhattacharya N; Rao R; Dauparas J; Thomas N; Zhou J; Rush AM; Koo P; Ovchinnikov S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36355460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alignment of multiple protein structures based on sequence and structure features.
    Madhusudhan MS; Webb BM; Marti-Renom MA; Eswar N; Sali A
    Protein Eng Des Sel; 2009 Sep; 22(9):569-74. PubMed ID: 19587024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating statistical significance of local protein profile-profile alignments.
    Margelevičius M
    BMC Bioinformatics; 2019 Aug; 20(1):419. PubMed ID: 31409275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local structure-based sequence profile database for local and global protein structure predictions.
    Yang AS; Wang LY
    Bioinformatics; 2002 Dec; 18(12):1650-7. PubMed ID: 12490450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refinement by shifting secondary structure elements improves sequence alignments.
    Tong J; Pei J; Otwinowski Z; Grishin NV
    Proteins; 2015 Mar; 83(3):411-27. PubMed ID: 25546158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures.
    Gerstein M; Levitt M
    Proc Int Conf Intell Syst Mol Biol; 1996; 4():59-67. PubMed ID: 8877505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adjusting scoring matrices to correct overextended alignments.
    Mills LJ; Pearson WR
    Bioinformatics; 2013 Dec; 29(23):3007-13. PubMed ID: 23995390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scoring profile-to-profile sequence alignments.
    Wang G; Dunbrack RL
    Protein Sci; 2004 Jun; 13(6):1612-26. PubMed ID: 15152092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SFESA: a web server for pairwise alignment refinement by secondary structure shifts.
    Tong J; Pei J; Grishin NV
    BMC Bioinformatics; 2015 Sep; 16(1):282. PubMed ID: 26335387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seventy-five percent accuracy in protein secondary structure prediction.
    Frishman D; Argos P
    Proteins; 1997 Mar; 27(3):329-35. PubMed ID: 9094735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vorolign--fast structural alignment using Voronoi contacts.
    Birzele F; Gewehr JE; Csaba G; Zimmer R
    Bioinformatics; 2007 Jan; 23(2):e205-11. PubMed ID: 17237093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using CLUSTAL for multiple sequence alignments.
    Higgins DG; Thompson JD; Gibson TJ
    Methods Enzymol; 1996; 266():383-402. PubMed ID: 8743695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence alignment using machine learning for accurate template-based protein structure prediction.
    Makigaki S; Ishida T
    Bioinformatics; 2020 Jan; 36(1):104-111. PubMed ID: 31197318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.