These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36753981)

  • 21. Establishment and Implementation of Potential Fluid Therapy Balance Strategies for ICU Sepsis Patients Based on Reinforcement Learning.
    Su L; Li Y; Liu S; Zhang S; Zhou X; Weng L; Su M; Du B; Zhu W; Long Y
    Front Med (Lausanne); 2022; 9():766447. PubMed ID: 35492326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats.
    Lloyd K; Becker N; Jones MW; Bogacz R
    Front Comput Neurosci; 2012; 6():87. PubMed ID: 23115551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Multi-Dimensional Goal Aircraft Guidance Approach Based on Reinforcement Learning with a Reward Shaping Algorithm.
    Zu W; Yang H; Liu R; Ji Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data.
    Zhang R; Datta S
    Genes (Basel); 2023 Apr; 14(5):. PubMed ID: 37239321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TMO-Net: an explainable pretrained multi-omics model for multi-task learning in oncology.
    Wang FA; Zhuang Z; Gao F; He R; Zhang S; Wang L; Liu J; Li Y
    Genome Biol; 2024 Jun; 25(1):149. PubMed ID: 38845006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning-based analysis of multi-omics data on the cloud for investigating gene regulations.
    Oh M; Park S; Kim S; Chae H
    Brief Bioinform; 2021 Jan; 22(1):66-76. PubMed ID: 32227074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Study on the Impact of Integrating Reinforcement Learning for Channel Prediction and Power Allocation Scheme in MISO-NOMA System.
    Gaballa M; Abbod M; Aldallal A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-agent Feature Selection for Integrative Multi-omics Analysis.
    Tabakhi S; Lu H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1638-1642. PubMed ID: 36086594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Omics Data Preprocessing for Machine Learning: A Case Study in Childhood Obesity.
    Torres-Martos Á; Bustos-Aibar M; Ramírez-Mena A; Cámara-Sánchez S; Anguita-Ruiz A; Alcalá R; Aguilera CM; Alcalá-Fdez J
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification.
    Moon S; Lee H
    Bioinformatics; 2022 Apr; 38(8):2287-2296. PubMed ID: 35157023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ProgCAE: a deep learning-based method that integrates multi-omics data to predict cancer subtypes.
    Liu Q; Song K
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.
    Morita K; Jitsev J; Morrison A
    Behav Brain Res; 2016 Sep; 311():110-121. PubMed ID: 27173430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Security Analysis of Cyber-Physical Systems Using Reinforcement Learning.
    Ibrahim M; Elhafiz R
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma.
    Wang C; Lue W; Kaalia R; Kumar P; Rajapakse JC
    Sci Rep; 2022 Sep; 12(1):15425. PubMed ID: 36104347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Day-to-day variability in hybrid, passive brain-computer interfaces: comparing two studies assessing cognitive workload.
    Klosterman SL; Estepp JR; Monnin JW; Christensen JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1584-1590. PubMed ID: 28268631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants.
    Wang K; Abid MA; Rasheed A; Crossa J; Hearne S; Li H
    Mol Plant; 2023 Jan; 16(1):279-293. PubMed ID: 36366781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.