These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 36754269)
1. Dual-network polyvinyl alcohol/polyacrylamide/xanthan gum ionic conductive hydrogels for flexible electronic devices. Zhou Y; Zhang L; Lin X; Lu J; Huang Z; Sun P; Zhang Y; Xu X; Li Q; Liu H Int J Biol Macromol; 2023 Apr; 233():123573. PubMed ID: 36754269 [TBL] [Abstract][Full Text] [Related]
2. Strong and tough poly(vinyl alcohol)/xanthan gum-based ionic conducting hydrogel enabled through the synergistic effect of ion cross-linking and salting out. Zhou Y; Wang X; Lin X; Wang Z; Huang Z; Guo L; Xie H; Xu X; Dong F Int J Biol Macromol; 2024 Apr; 263(Pt 2):130511. PubMed ID: 38423443 [TBL] [Abstract][Full Text] [Related]
3. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Wei J; Wang R; Pan F; Fu Z Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458997 [TBL] [Abstract][Full Text] [Related]
4. Facile fabrication of strong and conductive cellulose hydrogels with wide temperature tolerance for flexible sensors. Shu L; Zhang XF; Wu Y; Wang Z; Yao J Int J Biol Macromol; 2023 Jun; 240():124438. PubMed ID: 37060973 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional sodium lignosulfonate/xanthan gum/sodium alginate/polyacrylamide ionic hydrogels composite as a high-performance wearable strain sensor. Zhang M; Ren J; Li R; Zhang W; Li Y; Yang W Int J Biol Macromol; 2024 Mar; 261(Pt 2):129718. PubMed ID: 38296129 [TBL] [Abstract][Full Text] [Related]
6. Self-adhesive, freeze-tolerant, and strong hydrogel electrolyte containing xanthan gum enables the high-performance of zinc-ion hybrid supercapacitors. Zhou Y; Liu H; Zhou X; Lin X; Cai Y; Shen M; Huang X; Liu H; Xu X Int J Biol Macromol; 2024 Apr; 265(Pt 2):131143. PubMed ID: 38537861 [TBL] [Abstract][Full Text] [Related]
7. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
8. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors. Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113 [TBL] [Abstract][Full Text] [Related]
9. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Shu L; Wang Z; Zhang XF; Yao J Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872 [TBL] [Abstract][Full Text] [Related]
10. Freeze-resistant, rapidly polymerizable, ionic conductive hydrogel induced by Deep Eutectic Solvent (DES) after lignocellulose pretreatment for flexible sensors. Yan Y; He C; Zhang L; Dong H; Zhang X Int J Biol Macromol; 2023 Jan; 224():143-155. PubMed ID: 36257360 [TBL] [Abstract][Full Text] [Related]
11. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412 [TBL] [Abstract][Full Text] [Related]
12. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Hu J; Wu Y; Yang Q; Zhou Q; Hui L; Liu Z; Xu F; Ding D Carbohydr Polym; 2022 Jan; 275():118697. PubMed ID: 34742424 [TBL] [Abstract][Full Text] [Related]
13. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors. Zhao R; Fang Y; Zhao Z; Song S Int J Biol Macromol; 2024 Jun; 271(Pt 2):132585. PubMed ID: 38810849 [TBL] [Abstract][Full Text] [Related]
14. Tough, recyclable and biocompatible carrageenan-modified polyvinyl alcohol ionic hydrogel with physical cross-linked for multimodal sensing. Zeng L; Liu B; Duan L; Gao G Int J Biol Macromol; 2023 Dec; 253(Pt 4):126954. PubMed ID: 37734518 [TBL] [Abstract][Full Text] [Related]
15. High-strength, anti-fatigue, cellulose nanofiber reinforced polyvinyl alcohol based ionic conductive hydrogels for flexible strain/pressure sensors and triboelectric nanogenerators. Li Y; Ren P; Sun Z; Xue R; Ding D; Tian W; Ren F; Jin Y; Chen Z; Zhu G J Colloid Interface Sci; 2024 Sep; 669():248-257. PubMed ID: 38718578 [TBL] [Abstract][Full Text] [Related]
16. A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Gao Y; Peng J; Zhou M; Yang Y; Wang X; Wang J; Cao Y; Wang W; Wu D J Mater Chem B; 2020 Dec; 8(48):11010-11020. PubMed ID: 33188676 [TBL] [Abstract][Full Text] [Related]
17. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Lu J; Hu O; Hou L; Ye D; Weng S; Jiang X Int J Biol Macromol; 2022 Nov; 221():1002-1011. PubMed ID: 36113584 [TBL] [Abstract][Full Text] [Related]
18. High strength, anti-freezing and conductive silkworm excrement cellulose-based ionic hydrogel with physical-chemical double cross-linked for pressure sensing. Mu G; He W; He J; Muhammad Y; Shi Z; Zhang B; Zhou L; Zhao Z; Zhao Z Int J Biol Macromol; 2023 May; 236():123936. PubMed ID: 36894064 [TBL] [Abstract][Full Text] [Related]
19. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. Gan S; Bai S; Chen C; Zou Y; Sun Y; Zhao J; Rong J Int J Biol Macromol; 2021 Jun; 181():418-425. PubMed ID: 33781814 [TBL] [Abstract][Full Text] [Related]
20. Preparation of strong, tough and conductive soy protein isolate/poly(vinyl alcohol)-based hydrogel via the synergy of biomineralization and salting out. Deng Y; Yang M; Xiao G; Jiang X Int J Biol Macromol; 2024 Feb; 257(Pt 1):128566. PubMed ID: 38056752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]