These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36754295)

  • 1. Modified biochar prepared from Retinervus luffae fructus for dyes adsorption and aerobic sludge granulation.
    Yang X; Zhu W; Chen F; Song Y; Yu Y; Zhuang H
    Chemosphere; 2023 May; 322():138088. PubMed ID: 36754295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge.
    Xiao B; Dai Q; Yu X; Yu P; Zhai S; Liu R; Guo X; Liu J; Chen H
    J Hazard Mater; 2018 Feb; 343():347-355. PubMed ID: 29017118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnCl
    Yan L; Liu Y; Zhang Y; Liu S; Wang C; Chen W; Liu C; Chen Z; Zhang Y
    Bioresour Technol; 2020 Feb; 297():122381. PubMed ID: 31740243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochars derived from bamboo and rice straw for sorption of basic red dyes.
    Sackey EA; Song Y; Yu Y; Zhuang H
    PLoS One; 2021; 16(7):e0254637. PubMed ID: 34260652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar produced from the co-pyrolysis of sewage sludge and waste tires for cadmium and tetracycline adsorption from water.
    Fan X; Zhang J; Xie Y; Xu D; Liu Y; Liu J; Hou J
    Water Sci Technol; 2021 Mar; 83(6):1429-1445. PubMed ID: 33767048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of Co(II) from aqueous solution using municipal sludge biochar modified by HNO
    Hu C; Zhang W; Chen Y; Ye N; YangJi D; Jia H; Shen Y; Song M
    Water Sci Technol; 2021 Jul; 84(1):251-261. PubMed ID: 34280168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies.
    Ahmad A; Khan N; Giri BS; Chowdhary P; Chaturvedi P
    Bioresour Technol; 2020 Jun; 306():123202. PubMed ID: 32222427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste.
    Li J; Yu G; Pan L; Li C; You F; Wang Y
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22806-22817. PubMed ID: 32319068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective adsorption of Direct Red 23 by sludge biochar-based adsorbent: adsorption kinetics, thermodynamics and mechanisms study.
    Jiang R; Yu G; Ndagijimana P; Wang Y; You F; Xing Z; Wang Y
    Water Sci Technol; 2021 May; 83(10):2424-2436. PubMed ID: 34032620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of phosphate from aqueous solution by dewatered dry sludge biochar and its feasibility in fertilizer use.
    Liu M; Li R; Wang J; Liu X; Li S; Shen W
    Sci Total Environ; 2022 Mar; 814():152752. PubMed ID: 34979229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of 17β-Estradiol Adsorption on Corn Straw- and Dewatered Sludge-Biochar in Aqueous Solutions.
    Guo W; Yue J; Zhao Q; Zhang L; Lu S
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of food dyes from aqueous solution by chitosan-vermiculite beads.
    Şenol ZM; Gürsoy N; Şimşek S; Özer A; Karakuş N
    Int J Biol Macromol; 2020 Apr; 148():635-646. PubMed ID: 31958562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The characterization of a novel magnetic biochar derived from sulfate-reducing sludge and its application for aqueous Cr(Ⅵ) removal through synergistic effects of adsorption and chemical reduction.
    Chen Y; Ma R; Pu X; Fu X; Ju X; Arif M; Yan X; Qian J; Liu Y
    Chemosphere; 2022 Dec; 308(Pt 1):136258. PubMed ID: 36057356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of basic dyes from aqueous solution by activated sludge.
    Gulnaz O; Kaya A; Matyar F; Arikan B
    J Hazard Mater; 2004 May; 108(3):183-8. PubMed ID: 15120871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-biochar production from oily sludge pyrolysis and its application for organic dyes removal.
    Liu Y; Jiang Z; Fu J; Ao W; Ali Siyal A; Zhou C; Liu C; Dai J; Yu M; Zhang Y; Jin Y; Yuan Y; Zhang C
    Chemosphere; 2022 Aug; 301():134803. PubMed ID: 35508264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: artificial neural network modeling.
    Ghaedi AM; Ghaedi M; Karami P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():789-99. PubMed ID: 25435487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption.
    Xi J; Zhang R; Ye L; Du X; Lu X
    J Environ Manage; 2022 Feb; 304():114297. PubMed ID: 34933264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass.
    Zhao B; Xu X; Zhang R; Cui M
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16408-16419. PubMed ID: 33387322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of Cu(II)-modified aerobic granular sludge biocarbon in removal of doxycycline hydroxide.
    Zhao X; Wang H; Zhang G; Pei W; Xu Y; Li B
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14019-14035. PubMed ID: 34599713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of sludge biochar rich in carboxyl/hydroxyl groups by quenching process and its excellent adsorption performance for Cr(VI).
    Zeng B; Xu W; Khan SB; Wang Y; Zhang J; Yang J; Su X; Lin Z
    Chemosphere; 2021 Dec; 285():131439. PubMed ID: 34246932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.