These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3675475)

  • 21. [Comparative study of decompression-induced formation of gas bubbles using ultrasonic equipment and the development of altitude-decompression disorders].
    Iseev LR; Poliakov VN; Chadov VI
    Kosm Biol Aviakosm Med; 1988; 22(3):75-82. PubMed ID: 3047496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recompression during decompression and effects on bubble formation in the pig.
    Møllerløkken A; Gutvik C; Berge VJ; Jørgensen A; Løset A; Brubakk AO
    Aviat Space Environ Med; 2007 Jun; 78(6):557-60. PubMed ID: 17571654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epidemiology of decompression sickness under simulated space extravehicular activities.
    Kumar KV; Waligora JM; Powell MR
    Aviat Space Environ Med; 1993 Nov; 64(11):1032-9. PubMed ID: 8280036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Changes in the maximum permissible supersaturation coefficient in altitude decompression].
    Chadov VI; Iseev LR
    Kosm Biol Aviakosm Med; 1989; 23(3):58-62. PubMed ID: 2761213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decompression schedule optimization with an isoprobabilistic risk of decompression sickness.
    Horn BJ; Wake GC; Anthony TG
    Aviat Space Environ Med; 2006 Jan; 77(1):13-9. PubMed ID: 16422448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Growth dynamics and the largest size of gas bubbles emerging in body tissues due to decompression].
    Nikolaev VP
    Aviakosm Ekolog Med; 2005; 39(3):32-8. PubMed ID: 16193924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does the time course of bubble evolution explain decompression sickness risk?
    Ball R; Himm J; Homer LD; Thalmann ED
    Undersea Hyperb Med; 1995 Sep; 22(3):263-80. PubMed ID: 7580767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decompression sickness risk model: development and validation by 150 prospective hypobaric exposures.
    Pilmanis AA; Petropoulos LJ; Kannan N; Webb JT
    Aviat Space Environ Med; 2004 Sep; 75(9):749-59. PubMed ID: 15460625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of the maximum likelihood method in the analysis of chamber air dives.
    Tikuisis P; Nishi RY; Weathersby PK
    Undersea Biomed Res; 1988 Jul; 15(4):301-13. PubMed ID: 3212846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of standard decompression schedule by agarose gel method.
    Yano K; Mano Y
    Bull Tokyo Med Dent Univ; 1979 Sep; 26(3):197-212. PubMed ID: 290418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Developing and testing of decompression regimes for caisson operations while constructing Moscow metro].
    Rodchenkov SV; Syrovegin AV; Shulagin IA
    Aviakosm Ekolog Med; 1996; 30(5):23-8. PubMed ID: 8974594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple probabilistic model for standard air dives that is focused on total decompression time.
    Van Liew HD; Flynn ET
    Undersea Hyperb Med; 2005; 32(4):199-213. PubMed ID: 16238070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lower body adynamia as a factor to reduce the risk of hypobaric decompression sickness.
    Conkin J; Powell MR
    Aviat Space Environ Med; 2001 Mar; 72(3):202-14. PubMed ID: 11277286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field trials of no-decompression stop limits for diving at 3500 m.
    Egi SM; Gürmen NM; Aydin S
    Aviat Space Environ Med; 2003 Mar; 74(3):228-35. PubMed ID: 12650269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of decompression procedures based on detection of venous gas bubbles: A Bayesian approach.
    Eftedal OS; Tjelmeland H; Brubakk AO
    Aviat Space Environ Med; 2007 Feb; 78(2):94-9. PubMed ID: 17310879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and interactions of two inert gas bubbles during decompression.
    Jiang Y; Homer LD; Thalmann ED
    Undersea Hyperb Med; 1996 Sep; 23(3):131-40. PubMed ID: 8931280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The theory of high-altitide corrections to the U.S. Navy standard decompression tables. The cross corrections.
    Bell RL; Borgwardt RE
    Undersea Biomed Res; 1976 Mar; 3(1):1-23. PubMed ID: 1273981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Probability of the occurrence of altitude decompression disorders from breathing oxygen containing the gaseous products of human vital activities].
    Sedov AV; Mazin AN; Surovtsev NA
    Kosm Biol Aviakosm Med; 1980; 14(1):36-9. PubMed ID: 6102169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on testing method of susceptibility to decompression sickness in aerospace].
    Zhang JX; Peng YK; Zhang BL; Wang CM; Fu HW
    Space Med Med Eng (Beijing); 1999 Jun; 12(3):157-60. PubMed ID: 11766705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significance of delayed symptom onset and bubble growth in altitude decompression sickness.
    Olson RM; Krutz RW
    Aviat Space Environ Med; 1991 Apr; 62(4):296-9. PubMed ID: 2031629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.