These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3675480)

  • 1. Simulation of spaceflight with whole-body head-down tilt: influence on intraocular pressure and retinocortical processing.
    Linder BJ; Trick GL
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A139-42. PubMed ID: 3675480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering body position affects intraocular pressure and visual function.
    Linder BJ; Trick GL; Wolf ML
    Invest Ophthalmol Vis Sci; 1988 Oct; 29(10):1492-7. PubMed ID: 3170121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating increased ocular and systemic blood pressures with neuroretinal function.
    Kergoat H; Durand MJ
    Aviat Space Environ Med; 1996 Dec; 67(12):1174-8. PubMed ID: 8968485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body position and volume status as determinants of cardiovascular responses to transition into microgravity in parabolic flight.
    Karemaker JM; Stok WJ; Latham RD
    Physiologist; 1993; 36(1 Suppl):S56-7. PubMed ID: 11537427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The retina, visual pathways and visual cortex. Neurophysiological studies].
    Ganes T
    Tidsskr Nor Laegeforen; 1987 Aug; 107(22):1774-6. PubMed ID: 3660363
    [No Abstract]   [Full Text] [Related]  

  • 6. Recent bed rest results and countermeasure development at NASA.
    Hargens AR
    Acta Physiol Scand Suppl; 1994; 616():103-14. PubMed ID: 8042520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in leg volume during microgravity simulation.
    Thornton WE; Hedge V; Coleman E; Uri JJ; Moore TP
    Aviat Space Environ Med; 1992 Sep; 63(9):789-94. PubMed ID: 1524535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypercapnia augments resistive exercise-induced elevations in intraocular pressure in older individuals.
    Mekjavic IB; Amoaku W; Mlinar T; Jaki Mekjavic P
    Exp Physiol; 2020 Apr; 105(4):641-651. PubMed ID: 32034962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracranial and Intraocular Pressure During Various Degrees of Head-Down Tilt.
    Marshall-Goebel K; Mulder E; Bershad E; Laing C; Eklund A; Malm J; Stern C; Rittweger J
    Aerosp Med Hum Perform; 2017 Jan; 88(1):10-16. PubMed ID: 28061916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head-down tilt.
    Mader TH; Taylor GR; Hunter N; Caputo M; Meehan RT
    Aviat Space Environ Med; 1990 Sep; 61(9):810-3. PubMed ID: 2241746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Retinal and cortical electrical activity in man: physiologic bases and clinical applications].
    Skrandies W
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1991 Dec; 22(4):200-7. PubMed ID: 1786780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual retinocortical function in dementia of the Alzheimer type.
    Kergoat H; Kergoat MJ; Justino L; Chertkow H; Robillard A; Bergman H
    Gerontology; 2002; 48(4):197-203. PubMed ID: 12053107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postural variations of intraocular pressure--preflight experiments for the D1-mission.
    Draeger J; Hanke K
    Ophthalmic Res; 1986; 18(1):55-60. PubMed ID: 3951805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulated nystagmus reduces pattern-reversal more strongly than pattern-onset multifocal visual evoked potentials.
    Hoffmann MB; Seufert PS
    Clin Neurophysiol; 2005 Jul; 116(7):1723-32. PubMed ID: 15908272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Potential for modelling the hemodynamic effects of weightlessness by exposure to increased pressure].
    Nekhaev AS; Degtiarev VA; Bednenko VS; Kirillova ZA
    Kosm Biol Aviakosm Med; 1982; 16(5):54-7. PubMed ID: 7144098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venoconstrictive thigh cuffs impede fluid shifts during simulated microgravity.
    Lindgren KN; Kraft D; Ballard RE; Tucker A; Hargens AR
    Aviat Space Environ Med; 1998 Nov; 69(11):1052-8. PubMed ID: 9819160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flash of light: a personal review of 21 years of study of the electrical activity of the visual pathway beyond the retina.
    Harding GF
    Ophthalmic Physiol Opt; 1984; 4(4):293-304. PubMed ID: 6504525
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of head-down bed rest & microgravity on renal fluid excretion.
    Norsk P; Christensen NJ; Vorobiev D; Suzuki Y; Drummer C; Heer M
    J Gravit Physiol; 1998 Jul; 5(1):P81-4. PubMed ID: 11542375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 6 degrees head-down tilt on cardiopulmonary function: comparison with microgravity.
    Prisk GK; Fine JM; Elliott AR; West JB
    Aviat Space Environ Med; 2002 Jan; 73(1):8-16. PubMed ID: 11817623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal stone risk in a simulated microgravity environment: impact of treadmill exercise with lower body negative pressure.
    Monga M; Macias B; Groppo E; Kostelec M; Hargens A
    J Urol; 2006 Jul; 176(1):127-31. PubMed ID: 16753386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.