These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36754800)

  • 1. Theory, implementation, and disappointing results for two-photon absorption cross sections within the doubly electron-attached equation-of-motion coupled-cluster framework.
    Nanda KD; Gulania S; Krylov AI
    J Chem Phys; 2023 Feb; 158(5):054102. PubMed ID: 36754800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks.
    Nanda KD; Krylov AI
    J Chem Phys; 2015 Feb; 142(6):064118. PubMed ID: 25681898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of polarizable environment on two-photon absorption cross sections characterized by the equation-of-motion coupled-cluster singles and doubles method combined with the effective fragment potential approach.
    Nanda KD; Krylov AI
    J Chem Phys; 2018 Oct; 149(16):164109. PubMed ID: 30384698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equation-of-motion coupled-cluster theory for double electron attachment with spin-orbit coupling.
    Guo M; Wang Z; Wang F
    J Chem Phys; 2020 Dec; 153(21):214118. PubMed ID: 33291924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method.
    Nanda KD; Krylov AI
    J Chem Phys; 2017 Jun; 146(22):224103. PubMed ID: 29166070
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Rishi V; Ravi M; Perera A; Bartlett RJ
    J Phys Chem A; 2023 Jan; 127(3):828-834. PubMed ID: 36640093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Doubly Excited States with Equation of Motion Coupled Cluster Theory Restricted to Double Excitations.
    Boguslawski K
    J Chem Theory Comput; 2019 Jan; 15(1):18-24. PubMed ID: 30525613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations.
    Epifanovsky E; Klein K; Stopkowicz S; Gauss J; Krylov AI
    J Chem Phys; 2015 Aug; 143(6):064102. PubMed ID: 26277122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equation-of-motion coupled-cluster method with double electron-attaching operators: Theory, implementation, and benchmarks.
    Gulania S; Kjønstad EF; Stanton JF; Koch H; Krylov AI
    J Chem Phys; 2021 Mar; 154(11):114115. PubMed ID: 33752380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different equation-of-motion coupled cluster methods with different reference functions: the formyl radical.
    Kuś T; Bartlett RJ
    J Chem Phys; 2008 Sep; 129(10):104301. PubMed ID: 19044907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rank reduced coupled cluster theory. II. Equation-of-motion coupled-cluster singles and doubles.
    Hohenstein EG; Zhao Y; Parrish RM; Martínez TJ
    J Chem Phys; 2019 Oct; 151(16):164121. PubMed ID: 31675873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intermediate state approach for doubly excited dark states in EOM-coupled-cluster theory.
    Ravi M; Park YC; Perera A; Bartlett RJ
    J Chem Phys; 2022 May; 156(20):201102. PubMed ID: 35649829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static polarizabilities for excited states within the spin-conserving and spin-flipping equation-of-motion coupled-cluster singles and doubles formalism: Theory, implementation, and benchmarks.
    Nanda KD; Krylov AI
    J Chem Phys; 2016 Nov; 145(20):204116. PubMed ID: 27908122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to approximate equation-of-motion coupled cluster with triple excitations.
    Matthews DA; Stanton JF
    J Chem Phys; 2016 Sep; 145(12):124102. PubMed ID: 27782677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions.
    Jagau TC
    J Chem Phys; 2018 Jan; 148(2):024104. PubMed ID: 29331139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving upon the accuracy for doubly excited states within the coupled cluster singles and doubles theory.
    Kuś T; Bartlett RJ
    J Chem Phys; 2009 Sep; 131(12):124310. PubMed ID: 19791884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of low-scaling approximations to the equation of motion coupled-cluster singles and doubles equations.
    Goings JJ; Caricato M; Frisch MJ; Li X
    J Chem Phys; 2014 Oct; 141(16):164116. PubMed ID: 25362281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excited states from modified coupled cluster methods: Are they any better than EOM CCSD?
    Rishi V; Perera A; Nooijen M; Bartlett RJ
    J Chem Phys; 2017 Apr; 146(14):144104. PubMed ID: 28411589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states.
    Shiozaki T; Hirao K; Hirata S
    J Chem Phys; 2007 Jun; 126(24):244106. PubMed ID: 17614536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations.
    Slipchenko LV; Krylov AI
    J Chem Phys; 2005 Aug; 123(8):084107. PubMed ID: 16164282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.