These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36754823)

  • 1. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations.
    Nishimura Y; Nakai H
    J Chem Phys; 2023 Feb; 158(5):054106. PubMed ID: 36754823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear scaling algorithm for tight-binding molecular dynamics simulations.
    He ZH; Ye XB; Pan BC
    J Chem Phys; 2019 Mar; 150(11):114107. PubMed ID: 30902004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations.
    Nakai H; Kobayashi M; Yoshikawa T; Seino J; Ikabata Y; Nishimura Y
    J Phys Chem A; 2023 Jan; 127(3):589-618. PubMed ID: 36630608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery.
    Chou CP; Sakti AW; Nishimura Y; Nakai H
    Chem Rec; 2019 Apr; 19(4):746-757. PubMed ID: 30462370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.
    Negre CF; Mniszewski SM; Cawkwell MJ; Bock N; Wall ME; Niklasson AM
    J Chem Theory Comput; 2016 Jul; 12(7):3063-73. PubMed ID: 27267207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations.
    Nishimura Y; Nakai H
    J Comput Chem; 2018 Jan; 39(2):105-116. PubMed ID: 29047123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations.
    Grimme S
    J Chem Theory Comput; 2019 May; 15(5):2847-2862. PubMed ID: 30943025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of the synthesis of boron-nitride nanostructures in a hot, high pressure gas volume.
    Krstic PS; Han L; Irle S; Nakai H
    Chem Sci; 2018 Apr; 9(15):3803-3819. PubMed ID: 29780513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Graphene Formation via Detonation Synthesis: A DFTB Nanoreactor Approach.
    Lei T; Guo W; Liu Q; Jiao H; Cao DB; Teng B; Li YW; Liu X; Wen XD
    J Chem Theory Comput; 2019 Jun; 15(6):3654-3665. PubMed ID: 31117479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A variational linear-scaling framework to build practical, efficient next-generation orbital-based quantum force fields.
    Giese TJ; Chen H; Dissanayake T; Giambaşu GM; Heldenbrand H; Huang M; Kuechler ER; Lee TS; Panteva MT; Radak BK; York DM
    J Chem Theory Comput; 2013 Mar; 9(3):1417-1427. PubMed ID: 23814506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water.
    Sakti AW; Nishimura Y; Nakai H
    J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations.
    Uratani H; Nakai H
    J Chem Phys; 2020 Jun; 152(22):224109. PubMed ID: 32534554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic Mechanisms of Chemical Mechanical Polishing of a Cu Surface in Aqueous H2O2: Tight-Binding Quantum Chemical Molecular Dynamics Simulations.
    Kawaguchi K; Ito H; Kuwahara T; Higuchi Y; Ozawa N; Kubo M
    ACS Appl Mater Interfaces; 2016 May; 8(18):11830-41. PubMed ID: 27092706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.
    Nam K; Gao J; York DM
    J Chem Theory Comput; 2005 Jan; 1(1):2-13. PubMed ID: 26641110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.