These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36754823)

  • 41. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations.
    Li H; Fajer M; Yang W
    J Chem Phys; 2007 Jan; 126(2):024106. PubMed ID: 17228942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Graph-convolutional neural networks for (QM)ML/MM molecular dynamics simulations.
    Hofstetter A; Böselt L; Riniker S
    Phys Chem Chem Phys; 2022 Sep; 24(37):22497-22512. PubMed ID: 36106790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An Efficient Linear-Scaling Electrostatic Coupling for Treating Periodic Boundary Conditions in QM/MM Simulations.
    Laino T; Mohamed F; Laio A; Parrinello M
    J Chem Theory Comput; 2006 Sep; 2(5):1370-8. PubMed ID: 26626844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Semi-Automated Creation of Density Functional Tight Binding Models through Leveraging Chebyshev Polynomial-Based Force Fields.
    Goldman N; Kweon KE; Sadigh B; Heo TW; Lindsey RK; Pham CH; Fried LE; Aradi B; Holliday K; Jeffries JR; Wood BC
    J Chem Theory Comput; 2021 Jul; 17(7):4435-4448. PubMed ID: 34128678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automated Chemical Kinetic Modeling via Hybrid Reactive Molecular Dynamics and Quantum Chemistry Simulations.
    Döntgen M; Schmalz F; Kopp WA; Kröger LC; Leonhard K
    J Chem Inf Model; 2018 Jul; 58(7):1343-1355. PubMed ID: 29898359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.
    Vashishta P; Kalia RK; Nakano A
    J Phys Chem B; 2006 Mar; 110(8):3727-33. PubMed ID: 16494430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved algorithm for the direct dynamics variational multi-configurational Gaussian method.
    Christopoulou G; Freibert A; Worth GA
    J Chem Phys; 2021 Mar; 154(12):124127. PubMed ID: 33810697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulating water with the self-consistent-charge density functional tight binding method: from molecular clusters to the liquid state.
    Hu H; Lu Z; Elstner M; Hermans J; Yang W
    J Phys Chem A; 2007 Jul; 111(26):5685-91. PubMed ID: 17474727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. (De)localization dynamics of molecular excitons: comparison of mixed quantum-classical and fully quantum treatments.
    Titov E; Kopp T; Hoche J; Humeniuk A; Mitrić R
    Phys Chem Chem Phys; 2022 May; 24(20):12136-12148. PubMed ID: 35506999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantum chemical replica-exchange umbrella sampling molecular dynamics simulations reveal the formation mechanism of iron phthalocyanine from iron and phthalonitrile.
    Ito S; Wang Y; Okamoto Y; Irle S
    J Chem Phys; 2018 Aug; 149(7):072332. PubMed ID: 30134675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Nishimura Y; Nakai H
    J Chem Theory Comput; 2020 Apr; 16(4):2369-2378. PubMed ID: 32074445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovering Monoterpene Catalysis Inside Nanocapsules with Multiscale Modeling and Experiments.
    Pahima E; Zhang Q; Tiefenbacher K; Major DT
    J Am Chem Soc; 2019 Apr; 141(15):6234-6246. PubMed ID: 30907083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insights into Coke Formation and Removal under Operating Conditions with a Quantum Nanoreactor Approach.
    Lei T; Liu X; Pathak AD; Shetty S; Liu Q; Wen X
    J Phys Chem Lett; 2021 Oct; 12(39):9413-9421. PubMed ID: 34553945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantum algorithm for alchemical optimization in material design.
    Barkoutsos PK; Gkritsis F; Ollitrault PJ; Sokolov IO; Woerner S; Tavernelli I
    Chem Sci; 2021 Jan; 12(12):4345-4352. PubMed ID: 34163697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A divide-and-conquer strategy to improve diffusion sampling in generalized ensemble simulations.
    Min D; Yang W
    J Chem Phys; 2008 Mar; 128(9):094106. PubMed ID: 18331086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fully Automated Generation of Prebiotically Relevant Reaction Networks from Optimized Nanoreactor Simulations.
    Stan A; Esch BV; Ochsenfeld C
    J Chem Theory Comput; 2022 Nov; 18(11):6700-6712. PubMed ID: 36270030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sampling reactive pathways with random walks in chemical space: Applications to molecular dissociation and catalysis.
    Habershon S
    J Chem Phys; 2015 Sep; 143(9):094106. PubMed ID: 26342358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.