These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36754991)

  • 1. Variations in cochlea shape reveal different evolutionary adaptations in primates and rodents.
    Del Rio J; Taszus R; Nowotny M; Stoessel A
    Sci Rep; 2023 Feb; 13(1):2235. PubMed ID: 36754991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary paths to mammalian cochleae.
    Manley GA
    J Assoc Res Otolaryngol; 2012 Dec; 13(6):733-43. PubMed ID: 22983571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear labyrinth volume and hearing abilities in primates.
    Kirk EC; Gosselin-Ildari AD
    Anat Rec (Hoboken); 2009 Jun; 292(6):765-76. PubMed ID: 19462443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inner ear evolution in primates through the Cenozoic: implications for the evolution of hearing.
    Coleman MN; Boyer DM
    Anat Rec (Hoboken); 2012 Apr; 295(4):615-31. PubMed ID: 22282428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fossil evidence on evolution of inner ear cochlea in Jurassic mammals.
    Luo ZX; Ruf I; Schultz JA; Martin T
    Proc Biol Sci; 2011 Jan; 278(1702):28-34. PubMed ID: 20667879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear labyrinth volume in euarchontoglirans: implications for the evolution of hearing in primates.
    Armstrong SD; Bloch JI; Houde P; Silcox MT
    Anat Rec (Hoboken); 2011 Feb; 294(2):263-6. PubMed ID: 21235000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea.
    Grohé C; Tseng ZJ; Lebrun R; Boistel R; Flynn JJ
    J Anat; 2016 Mar; 228(3):366-83. PubMed ID: 26577069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the ontogenetic development of the inner ear in Aardvarks.
    Berlioz E; Cornette R; Lenoir N; Santin MD; Lehmann T
    J Anat; 2021 May; 238(5):1128-1142. PubMed ID: 33345316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals.
    Ruf I; Luo ZX; Wible JR; Martin T
    J Anat; 2009 May; 214(5):679-93. PubMed ID: 19438763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mammalian Cretaceous cochlear revolution.
    Manley GA
    Hear Res; 2017 Sep; 352():23-29. PubMed ID: 28007525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between auditory structures and hearing sensitivity in non-human primates.
    Coleman MN; Colbert MW
    J Morphol; 2010 May; 271(5):511-32. PubMed ID: 20025067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters.
    Macrini TE; Flynn JJ; Ni X; Croft DA; Wyss AR
    J Anat; 2013 Nov; 223(5):442-61. PubMed ID: 24102069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergence vs. Specialization in the ear region of moles (Mammalia).
    Crumpton N; Kardjilov N; Asher RJ
    J Morphol; 2015 Aug; 276(8):900-14. PubMed ID: 25858660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution.
    Schultz JA; Zeller U; Luo ZX
    J Morphol; 2017 Feb; 278(2):236-263. PubMed ID: 27889918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Petrosal morphology and cochlear function in Mesozoic stem therians.
    Harper T; Rougier GW
    PLoS One; 2019; 14(8):e0209457. PubMed ID: 31412094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheep as a large animal model for middle and inner ear implantable hearing devices: a feasibility study in cadavers.
    Schnabl J; Glueckert R; Feuchtner G; Recheis W; Potrusil T; Kuhn V; Wolf-Magele A; Riechelmann H; Sprinzl GM
    Otol Neurotol; 2012 Apr; 33(3):481-9. PubMed ID: 22410732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explaining high-frequency hearing.
    Heffner R; Heffner H
    Anat Rec (Hoboken); 2010 Dec; 293(12):2080-2. PubMed ID: 21089045
    [No Abstract]   [Full Text] [Related]  

  • 19. Associated tympanic bullar and cochlear hypertrophy define adaptations to true deserts in African gerbils and laminate-toothed rats (Muridae: Gerbillinae and Murinae).
    Nengovhela A; Braga J; Denys C; de Beer F; Tenailleau C; Taylor PJ
    J Anat; 2019 Feb; 234(2):179-192. PubMed ID: 30474264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative aspects of cochlear functional organization in mammals.
    Vater M; Kössl M
    Hear Res; 2011 Mar; 273(1-2):89-99. PubMed ID: 20630478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.