These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3675510)

  • 1. Body volume changes during simulated weightlessness: an overview.
    Montgomery LD
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A80-5. PubMed ID: 3675510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body volume changes during simulated microgravity I: Technique and comparison of men and women during horizontal bed rest.
    Montgomery LD
    Aviat Space Environ Med; 1993 Oct; 64(10):893-8. PubMed ID: 8240192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid shifts in weightlessness.
    Thornton WE; Moore TP; Pool SL
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A86-90. PubMed ID: 3675511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space shuttle inflight and postflight fluid shifts measured by leg volume changes.
    Moore TP; Thornton WE
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A91-6. PubMed ID: 3675513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body volume changes during simulated microgravity. II: Comparison of horizontal and head-down bed rest.
    Montgomery LD
    Aviat Space Environ Med; 1993 Oct; 64(10):899-904. PubMed ID: 8240193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma viscosity elevations with simulated weightlessness.
    Martin DG; Convertino VA; Goldwater D; Ferguson EW; Schoomaker EB
    Aviat Space Environ Med; 1986 May; 57(5):426-31. PubMed ID: 3707471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in leg volume during microgravity simulation.
    Thornton WE; Hedge V; Coleman E; Uri JJ; Moore TP
    Aviat Space Environ Med; 1992 Sep; 63(9):789-94. PubMed ID: 1524535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in body fluid distribution during 7 days 6 degrees head-down bed rest.
    Sudoh M; Sekiguchi C; Kurihara S
    J Gravit Physiol; 1999 Jul; 6(1):P155-6. PubMed ID: 11543002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal osmoregulatory function during simulated space flight.
    Kozyrevskaya GI; Grigoriev AI; Natochin YV
    Life Sci Space Res; 1976; 14():307-11. PubMed ID: 12678115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanisms of volume regulation under the effect of spaceflight factors].
    Noskov VB
    Aviakosm Ekolog Med; 2000; 34(4):3-8. PubMed ID: 11186581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The progress in research on the mechanisms of the effects of blood volume reduction on orthostatic tolerance after microgravity or simulated microgravity].
    Wang DS; Ren W; Xiang QL; Sun L
    Space Med Med Eng (Beijing); 2000 Apr; 13(2):152-6. PubMed ID: 11543055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of a 14-day flight on body fluids in primates.
    Lobachik VI; Chupushtanov SA; Pischulina GN; Nosovsky AM
    J Gravit Physiol; 2000 Jan; 7(1):S135-7. PubMed ID: 11543442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gravitational stress and fluid volume regulation: a suggestion for revision of current hypotheses.
    Norsk P
    J Gravit Physiol; 1997 Jul; 4(2):P85-8. PubMed ID: 11540709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women.
    Trappe TA; Burd NA; Louis ES; Lee GA; Trappe SW
    Acta Physiol (Oxf); 2007 Oct; 191(2):147-59. PubMed ID: 17655736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the venous hemodynamics of the leg under simulated weightlessness: effects of physical exercise as countermeasure.
    Louisy F; Berry P; Marini JF; Güell A; Guezennec CY
    Aviat Space Environ Med; 1995 Jun; 66(6):542-9. PubMed ID: 7646404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bed rest effects on human calf hemodynamics and orthostatic intolerance: a model-based analysis.
    Xiao X; Grenon SM; Kim C; Sheynberg N; Hurwitz S; Williams GH; Cohen RJ
    Aviat Space Environ Med; 2005 Nov; 76(11):1037-45. PubMed ID: 16315396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staying in bed to benefit ESA's astronauts and Europe's citizens.
    Elmann-Larsen B; Schmitt D
    ESA Bull; 2003 Feb; 113():34-9. PubMed ID: 14513815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid control mechanisms in weightlessness.
    Leach CS
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A74-9. PubMed ID: 3675509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Logistic risk model for the unique effects of inherent aerobic capacity on +Gz tolerance before and after simulated weightlessness.
    Ludwig DA; Convertino VA; Goldwater DJ; Sandler H
    Aviat Space Environ Med; 1987 Nov; 58(11):1057-61. PubMed ID: 3689269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid shifts in vascular and extravascular spaces during and after simulated weightlessness.
    Hargens AR
    Med Sci Sports Exerc; 1983; 15(5):421-7. PubMed ID: 6645873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.