These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Zhang H; Park J; Jiang Y; Woodrow KA Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480 [TBL] [Abstract][Full Text] [Related]
7. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations. He X; Fan J; Wooley KL Chem Asian J; 2016 Feb; 11(4):437-47. PubMed ID: 26568257 [TBL] [Abstract][Full Text] [Related]
8. Methionine-associated peptide α-amidation is directed both to the N- and the C-terminal amino acids. Sajapin J; Kulas A; Hellwig M J Pept Sci; 2022 Nov; 28(11):e3429. PubMed ID: 35694817 [TBL] [Abstract][Full Text] [Related]
9. Formation of pH-Responsive Supramolecular Hydrogels in Basic Buffers: Self-assembly of Amphiphilic Tris-Urea. Kimura S; Haraya N; Komiyama T; Yokoya M; Yamanaka M Chem Pharm Bull (Tokyo); 2021; 69(11):1131-1135. PubMed ID: 34719596 [TBL] [Abstract][Full Text] [Related]
10. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Loo Y; Zhang S; Hauser CA Biotechnol Adv; 2012; 30(3):593-603. PubMed ID: 22041166 [TBL] [Abstract][Full Text] [Related]
11. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release. Nummelin S; Liljeström V; Saarikoski E; Ropponen J; Nykänen A; Linko V; Seppälä J; Hirvonen J; Ikkala O; Bimbo LM; Kostiainen MA Chemistry; 2015 Oct; 21(41):14433-9. PubMed ID: 26134175 [TBL] [Abstract][Full Text] [Related]
12. Design of self-assembling peptide hydrogelators amenable to bacterial expression. Sonmez C; Nagy KJ; Schneider JP Biomaterials; 2015 Jan; 37():62-72. PubMed ID: 25453938 [TBL] [Abstract][Full Text] [Related]
13. Effects of salt concentrations of the aqueous peptide-amphiphile solutions on the sol-gel transitions, the gelation speed, and the gel characteristics. Otsuka T; Maeda T; Hotta A J Phys Chem B; 2014 Oct; 118(39):11537-45. PubMed ID: 25196562 [TBL] [Abstract][Full Text] [Related]
14. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles. Fu IW; Nguyen HD Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113 [TBL] [Abstract][Full Text] [Related]
15. Aromatic-Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels. Li J; Du X; Hashim S; Shy A; Xu B J Am Chem Soc; 2017 Jan; 139(1):71-74. PubMed ID: 27997165 [TBL] [Abstract][Full Text] [Related]
16. Controlled biodegradation of self-assembling β-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Giano MC; Pochan DJ; Schneider JP Biomaterials; 2011 Sep; 32(27):6471-7. PubMed ID: 21683437 [TBL] [Abstract][Full Text] [Related]
17. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels. Pugliese R; Fontana F; Marchini A; Gelain F Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535 [TBL] [Abstract][Full Text] [Related]
18. Multiple Stimuli-Responsive Supramolecular Gel Formed from Modified Adenosine. Kimura S; Mori S; Yokoya M; Yamanaka M Chem Pharm Bull (Tokyo); 2022; 70(6):443-447. PubMed ID: 35650041 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Charge-Regulated Supramolecular Copolymerization to Tune the Time Scale for Oxidative Disassembly of β-Sheet Comonomers. Berac CM; Zengerling L; Straβburger D; Otter R; Urschbach M; Besenius P Macromol Rapid Commun; 2020 Jan; 41(1):e1900476. PubMed ID: 31682046 [TBL] [Abstract][Full Text] [Related]
20. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. Koutsopoulos S; Zhang S J Control Release; 2012 Jun; 160(3):451-8. PubMed ID: 22465676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]