These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36756195)
1. Characteristics of iodine-bearing silver-impregnated alumina sorbents and their direct solidification Sakuragi T; Yoshida S; Kato O Front Chem; 2023; 11():1089501. PubMed ID: 36756195 [TBL] [Abstract][Full Text] [Related]
2. The behavior of iodine in stabilized granular activated carbon and silver mordenite in cementitious waste forms. Fujii Yamagata A; Saslow SA; Neeway JJ; Varga T; Reno LR; Zhu Z; Rod KA; Johnson BR; Silverstein JA; Westsik JH; Smith GL; Asmussen RM J Environ Radioact; 2022 Apr; 244-245():106824. PubMed ID: 35121278 [TBL] [Abstract][Full Text] [Related]
3. Iodine speciation in a silver-amended cementitious system. Kaplan DI; Price KA; Xu C; Li D; Lin P; Xing W; Nichols R; Schwehr K; Seaman JC; Ohnuki T; Chen N; Santschi PH Environ Int; 2019 May; 126():576-584. PubMed ID: 30852445 [TBL] [Abstract][Full Text] [Related]
4. Abatement of radioiodine in aqueous reprocessing off-gas. Greaney AT; Ngelale RO; Bruffey SH; Martin LR Front Chem; 2022; 10():1078668. PubMed ID: 36712985 [TBL] [Abstract][Full Text] [Related]
5. Investigation of bismuth-based metal-organic frameworks for effective capture and immobilization of radioiodine gas. Jung YE; Yang JH; Yim MS J Hazard Mater; 2024 Apr; 467():133777. PubMed ID: 38359759 [TBL] [Abstract][Full Text] [Related]
6. Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems. Li D; Kaplan DI; Price KA; Seaman JC; Roberts K; Xu C; Lin P; Xing W; Schwehr K; Santschi PH J Environ Radioact; 2019 Nov; 208-209():106017. PubMed ID: 31325735 [TBL] [Abstract][Full Text] [Related]
7. Investigating the Durability of Iodine Waste Forms in Dilute Conditions. Asmussen RM; Ryan JV; Matyas J; Crum JV; Reiser JT; Avalos N; McElroy EM; Lawter AR; Canfield NC Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30813531 [TBL] [Abstract][Full Text] [Related]
8. Lead-vanadate sorbents for iodine trapping and their conversion into an iodoapatite-based conditioning matrix. Pénélope R; Campayo L; Fournier M; Le Gallet S; Gossard A; Grandjean A Front Chem; 2022; 10():1085868. PubMed ID: 36618862 [TBL] [Abstract][Full Text] [Related]
9. Bi Chee TS; Lee S; Ng WJ; Akmal M; Ryu HJ ACS Appl Mater Interfaces; 2023 Aug; 15(34):40438-40450. PubMed ID: 37581564 [TBL] [Abstract][Full Text] [Related]
10. Capture of Iodine from Nuclear-Fuel-Reprocessing Off-Gas: Influence of Aging on a Reduced Silver Mordenite Adsorbent after Exposure to NO/NO Wiechert AI; Ladshaw AP; Moon J; Abney CW; Nan Y; Choi S; Liu J; Tavlarides LL; Tsouris C; Yiacoumi S ACS Appl Mater Interfaces; 2020 Nov; 12(44):49680-49693. PubMed ID: 33090761 [TBL] [Abstract][Full Text] [Related]
11. Radioiodine speciation in the hot cell effluent gases of a radiopharmaceutical production facility. Lee BS; Jester WA; Olynyk JM Health Phys; 1991 Aug; 61(2):255-8. PubMed ID: 1856086 [TBL] [Abstract][Full Text] [Related]
12. Sorption of iodine in soils: insight from selective sequential extractions and X-ray absorption spectroscopy. Köhler F; Riebe B; Scheinost AC; König C; Hölzer A; Walther C Environ Sci Pollut Res Int; 2019 Aug; 26(23):23850-23860. PubMed ID: 31214887 [TBL] [Abstract][Full Text] [Related]
13. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units. Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812 [TBL] [Abstract][Full Text] [Related]
14. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. Asmussen RM; Matyáš J; Qafoku NP; Kruger AA J Hazard Mater; 2019 Nov; 379():119364. PubMed ID: 29753522 [TBL] [Abstract][Full Text] [Related]
15. Structure-Activity Relationships between the State of Silver on Different Supports and Their I Azambre B; Chebbi M; Ibrahim N Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069180 [TBL] [Abstract][Full Text] [Related]
16. Highly radioiodine gas capture by 2-mercaptobenzimidazole-functionalized Bi/Mg oxide and effective iodine waste immobilization by etidronic-Bi Muhire C; Zhang D; Chang C; Zhang X; Li D; Zhiren G; Zhang Z; Zhang F; Hou J; Li J; Xu X J Hazard Mater; 2024 Aug; 474():134688. PubMed ID: 38805823 [TBL] [Abstract][Full Text] [Related]
17. Porous Copper-Loaded Zeolites for High-Efficiency Capture of Iodine from Spent Fuel Reprocessing Off-Gas. Zhou J; Chen Q; Li T; Lan T; Bai P; Liu F; Yuan Z; Zheng W; Yan W; Yan T Inorg Chem; 2022 May; 61(20):7746-7753. PubMed ID: 35544682 [TBL] [Abstract][Full Text] [Related]
18. Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Karanfil T; Moro EC; Serkiz SM Environ Technol; 2005 Nov; 26(11):1255-62. PubMed ID: 16335600 [TBL] [Abstract][Full Text] [Related]
19. Cross-linked chitosan microspheres entrapping silver chloride via the improved emulsion technology for iodide ion adsorption. Li Q; Mao Q; Li M; Zhang S; He G; Zhang W Carbohydr Polym; 2020 Apr; 234():115926. PubMed ID: 32070545 [TBL] [Abstract][Full Text] [Related]
20. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Xiu FR; Qi Y; Zhang FS Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]