These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36756326)

  • 1. Capturing coacervate formation and protein partition by molecular dynamics simulation.
    Liu Y; Wang X; Wan Z; Ngai T; Tse YS
    Chem Sci; 2023 Feb; 14(5):1168-1175. PubMed ID: 36756326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning and Enhanced Self-Assembly of Actin in Polypeptide Coacervates.
    McCall PM; Srivastava S; Perry SL; Kovar DR; Gardel ML; Tirrell MV
    Biophys J; 2018 Apr; 114(7):1636-1645. PubMed ID: 29642033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule.
    Choi S; Knoerdel AR; Sing CE; Keating CD
    J Phys Chem B; 2023 Jul; 127(26):5978-5991. PubMed ID: 37350455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular Chemistry in Liquid Phase Separated Compartments.
    Nakashima KK; Vibhute MA; Spruijt E
    Front Mol Biosci; 2019; 6():21. PubMed ID: 31001538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex Coacervate Materials as Artificial Cells.
    Cook AB; Novosedlik S; van Hest JCM
    Acc Mater Res; 2023 Mar; 4(3):287-298. PubMed ID: 37009061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis.
    Cao S; Ivanov T; Heuer J; Ferguson CTJ; Landfester K; Caire da Silva L
    Nat Commun; 2024 Jan; 15(1):39. PubMed ID: 38169470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal control of coacervate formation within liposomes.
    Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C
    Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model.
    Tsanai M; Frederix PWJM; Schroer CFE; Souza PCT; Marrink SJ
    Chem Sci; 2021 May; 12(24):8521-8530. PubMed ID: 34221333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging.
    Chen Y; Yuan M; Zhang Y; Zhou S; Wang K; Wu Z; Liu J
    Biomater Sci; 2022 Aug; 10(16):4588-4595. PubMed ID: 35792669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial properties of polymeric complex coacervates from simulation and theory.
    Lytle TK; Salazar AJ; Sing CE
    J Chem Phys; 2018 Oct; 149(16):163315. PubMed ID: 30384702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic control over coacervation.
    Nakashima KK; André AAM; Spruijt E
    Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid Vesicle-Coated Complex Coacervates.
    Pir Cakmak F; Grigas AT; Keating CD
    Langmuir; 2019 Jun; 35(24):7830-7840. PubMed ID: 31091880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membranization of Coacervates into Artificial Phagocytes with Predation toward Bacteria.
    Zhao C; Li J; Wang S; Xu Z; Wang X; Liu X; Wang L; Huang X
    ACS Nano; 2021 Jun; 15(6):10048-10057. PubMed ID: 34047543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity.
    Cook AB; Gonzalez BD; van Hest JCM
    Biomacromolecules; 2024 Jan; 25(1):425-435. PubMed ID: 38064593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly.
    Aumiller WM; Pir Cakmak F; Davis BW; Keating CD
    Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.