These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36756326)

  • 21. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly.
    Aumiller WM; Pir Cakmak F; Davis BW; Keating CD
    Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-Controlled Coacervate-Membrane Interactions within Liposomes.
    Last MGF; Deshpande S; Dekker C
    ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiphasic Coacervates Assembled by Hydrogen Bonding and Hydrophobic Interactions.
    Liu X; Mokarizadeh AH; Narayanan A; Mane P; Pandit A; Tseng YM; Tsige M; Joy A
    J Am Chem Soc; 2023 Oct; 145(42):23109-23120. PubMed ID: 37820374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mimicking Cellular Compartmentalization in a Hierarchical Protocell through Spontaneous Spatial Organization.
    Mason AF; Yewdall NA; Welzen PLW; Shao J; van Stevendaal M; van Hest JCM; Williams DS; Abdelmohsen LKEA
    ACS Cent Sci; 2019 Aug; 5(8):1360-1365. PubMed ID: 31482118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells.
    Ianeselli A; Tetiker D; Stein J; Kühnlein A; Mast CB; Braun D; Dora Tang TY
    Nat Chem; 2022 Jan; 14(1):32-39. PubMed ID: 34873298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualizing Formation and Dynamics of a Three-Dimensional Sponge-like Network of a Coacervate in Real Time.
    Kubota R; Hiroi T; Ikuta Y; Liu Y; Hamachi I
    J Am Chem Soc; 2023 Aug; 145(33):18316-18328. PubMed ID: 37562059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible photocontrol of DNA coacervation.
    Lafon S; Martin N
    Methods Enzymol; 2021; 646():329-351. PubMed ID: 33453931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.
    Kojima T; Takayama S
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32782-32791. PubMed ID: 30179001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior.
    Liu W; Deng J; Song S; Sethi S; Walther A
    Commun Chem; 2024 May; 7(1):100. PubMed ID: 38693272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular and structural basis of low interfacial energy of complex coacervates in water.
    Jho Y; Yoo HY; Lin Y; Han S; Hwang DS
    Adv Colloid Interface Sci; 2017 Jan; 239():61-73. PubMed ID: 27499328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unraveling mechanisms of protein encapsulation and release in coacervates
    Wang Y; Zou R; Zhou Y; Zheng Y; Peng C; Liu Y; Tan H; Fu Q; Ding M
    Chem Sci; 2024 Aug; 15(33):13442-13451. PubMed ID: 39183928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation and hemostatic properties of polyphosphate coacervates.
    Momeni A; Filiaggi MJ
    Acta Biomater; 2016 Sep; 41():328-41. PubMed ID: 27265150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic Regulation of Protein-Protein Interactions in Artificial Cells.
    van Veldhuisen TW; Altenburg WJ; Verwiel MAM; Lemmens LJM; Mason AF; Merkx M; Brunsveld L; van Hest JCM
    Adv Mater; 2023 Jul; 35(29):e2300947. PubMed ID: 37027309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs.
    Wang J; Abbas M; Huang Y; Wang J; Li Y
    Commun Chem; 2023 Nov; 6(1):243. PubMed ID: 37935871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-confined liquid-liquid phase separation toward artificial organelles.
    Mu W; Ji Z; Zhou M; Wu J; Lin Y; Qiao Y
    Sci Adv; 2021 May; 7(22):. PubMed ID: 34049872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffusivity of whey protein and gum arabic in their coacervates.
    Weinbreck F; Rollema HS; Tromp RH; de Kruif CG
    Langmuir; 2004 Jul; 20(15):6389-95. PubMed ID: 15248727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comb Polyelectrolytes Stabilize Complex Coacervate Microdroplet Dispersions.
    Gao S; Srivastava S
    ACS Macro Lett; 2022 Jul; 11(7):902-909. PubMed ID: 35786870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium dodecyl sulfate modulates the structure and rheological properties of Pluronic F108-poly(acrylic acid) coacervates).
    Gong Z; Zacharia NS; Vogt BD
    Soft Matter; 2022 Jan; 18(2):340-350. PubMed ID: 34882160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle-Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution to Provide a Stable Segregated Cell Microenvironment.
    Zhao P; Yang B; Xu X; Lai NC; Li R; Yang X; Bian L
    Adv Mater; 2021 Mar; 33(9):e2007209. PubMed ID: 33506543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.