These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36756422)

  • 1. Electrical transport properties of TiO
    Li Y; Li Y; Zhang Q; Liu X; Li Y; Xiao N; Ning P; Wang J; Zhang J; Liu H
    RSC Adv; 2023 Jan; 13(5):3333-3340. PubMed ID: 36756422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI
    He J; Casanova D; Fang WH; Long R; Prezhdo OV
    J Phys Chem Lett; 2020 Jun; 11(11):4481-4489. PubMed ID: 32423207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Interfacial Charge Transfer and Photocatalytic NO Oxidation on BiOBr/SnO
    Wu H; Yuan C; Chen R; Wang J; Dong F; Li J; Sun Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43741-43749. PubMed ID: 32867469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress and Defect Effects on Electron Transport Properties at SnO
    Pu W; Xiao W; Wang J; Li XW; Wang L
    ACS Omega; 2022 May; 7(18):16187-16196. PubMed ID: 35571810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SnO
    Huy TH; Bui DP; Kang F; Wang YF; Liu SH; Thi CM; You SJ; Chang GM; Pham VV
    Chemosphere; 2019 Jan; 215():323-332. PubMed ID: 30321811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Motivated SnO
    Hu C; Chen L; Hu Y; Chen A; Chen L; Jiang H; Li C
    Adv Mater; 2021 Dec; 33(49):e2103558. PubMed ID: 34626027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO
    Chiang CH; Kan CW; Wu CG
    ACS Appl Mater Interfaces; 2021 May; 13(20):23606-23615. PubMed ID: 33974384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells.
    Barbé J; Tietze ML; Neophytou M; Murali B; Alarousu E; Labban AE; Abulikemu M; Yue W; Mohammed OF; McCulloch I; Amassian A; Del Gobbo S
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11828-11836. PubMed ID: 28177212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of the Electron Transport Layer Surface Reconstruction on the Buried Interface in Perovskite Optoelectronic Devices.
    Zhang S; Su J; Zhang J; Lin Z; Yuan H; Chang J; Hao Y
    J Phys Chem Lett; 2021 Dec; 12(49):11834-11842. PubMed ID: 34870988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells.
    Haruyama J; Sodeyama K; Han L; Tateyama Y
    Acc Chem Res; 2016 Mar; 49(3):554-61. PubMed ID: 26901120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers.
    Gu H; Zhao C; Zhang Y; Shao G
    Nanotechnology; 2018 Sep; 29(38):385401. PubMed ID: 29947612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance photovoltaic application of the 2D all-inorganic Ruddlesden-Popper perovskite heterostructure Cs
    Pan LY; Ding YF; Liu HQ; Cai MQ
    Phys Chem Chem Phys; 2021 Oct; 23(41):23703-23710. PubMed ID: 34642715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Energy Faceted SnO₂-Coated TiO₂ Nanobelt Heterostructure for Near-Ambient Temperature-Responsive Ethanol Sensor.
    Chen G; Ji S; Li H; Kang X; Chang S; Wang Y; Yu G; Lu J; Claverie J; Sang Y; Liu H
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24950-6. PubMed ID: 26484799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Modification of SnO
    Zhao F; Deng L; Wang K; Han C; Liu Z; Yu H; Li J; Hu B
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5120-5127. PubMed ID: 31902207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Passivation of Perovskite and SnO
    Chen Y; Zuo X; He Y; Qian F; Zuo S; Zhang Y; Liang L; Chen Z; Zhao K; Liu Z; Gou J; Liu SF
    Adv Sci (Weinh); 2021 Mar; 8(5):2001466. PubMed ID: 33717834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Study of Electron Injection and Defects at the TiO
    Haruyama J; Sodeyama K; Hamada I; Han L; Tateyama Y
    J Phys Chem Lett; 2017 Dec; 8(23):5840-5847. PubMed ID: 29129082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Rutile TiO
    Wang Y; Wan J; Ding J; Hu JS; Wang D
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9414-9418. PubMed ID: 31041835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin SnO2 scaffolds for TiO2-based heterojunction photoanodes in dye-sensitized solar cells: oriented charge transport and improved light scattering.
    Yang S; Hou Y; Xing J; Zhang B; Tian F; Yang XH; Yang HG
    Chemistry; 2013 Jul; 19(28):9366-70. PubMed ID: 23733334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cesium Acetate-Induced Interfacial Compositional Change and Graded Band Level in MAPbI
    Jena AK; Ishii A; Guo Z; Kamarudin MA; Hayase S; Miyasaka T
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33631-33637. PubMed ID: 32628004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles calculations and experimental investigation on SnO
    Chen S; Liu F; Xu M; Yan J; Zhang F; Zhao W; Zhang Z; Deng Z; Yun J; Chen R; Liu C
    J Colloid Interface Sci; 2019 Oct; 553():613-621. PubMed ID: 31247500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.