BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36756534)

  • 1. Multimodal bipedal locomotion generation with passive dynamics
    Koseki S; Kutsuzawa K; Owaki D; Hayashibe M
    Front Neurorobot; 2022; 16():1054239. PubMed ID: 36756534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning with Gait Mode Specification for Quadrupedal Trot-Gallop Energetic Analysis.
    Chai J; Owaki D; Hayashibe M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4583-4587. PubMed ID: 34892236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Gait Acquisition through Learning Dynamic Stimulus Instinct of Bipedal Robot.
    Zhang Y; Chen X; Meng F; Yu Z; Du Y; Zhou Z; Gao J
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning 3D Bipedal Walking with Planned Footsteps and Fourier Series Periodic Gait Planning.
    Wang S; Piao S; Leng X; He Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design.
    Li C; Li M; Tao C
    Front Neurorobot; 2023; 17():1205775. PubMed ID: 37614967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Bipedal Locomotion Based on Reinforcement Learning and Heuristics.
    Wang Z; Wei W; Xie A; Zhang Y; Wu J; Zhu Q
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reward-Adaptive Reinforcement Learning: Dynamic Policy Gradient Optimization for Bipedal Locomotion.
    Huang C; Wang G; Zhou Z; Zhang R; Lin L
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7686-7695. PubMed ID: 36409817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning.
    Zheng C; Li G; Hayashibe M
    Front Robot AI; 2022; 9():957931. PubMed ID: 36158602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bipedal gait versatility in the Japanese macaque (Macaca fuscata).
    Ogihara N; Hirasaki E; Andrada E; Blickhan R
    J Hum Evol; 2018 Dec; 125():2-14. PubMed ID: 30502894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All common bipedal gaits emerge from a single passive model.
    Gan Z; Yesilevskiy Y; Zaytsev P; Remy CD
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of benthic bipedalism.
    Giardina F; Mahadevan L
    J R Soc Interface; 2021 Jan; 18(174):20200701. PubMed ID: 33435842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Template Model Explains Jerboa Gait Transitions Across a Broad Range of Speeds.
    Ding J; Moore TY; Gan Z
    Front Bioeng Biotechnol; 2022; 10():804826. PubMed ID: 35600899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft tissue vibration: a biologically-inspired mechanism for stabilizing bipedal locomotion.
    Masters SE; Challis JH
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33352541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains.
    Shafiee M; Bellegarda G; Ijspeert A
    Nat Commun; 2024 Apr; 15(1):3073. PubMed ID: 38594288
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.