BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3675701)

  • 1. Transformation of sulfated bile acids by human intestinal microflora.
    Pacini N; Albini E; Ferrari A; Zanchi R; Marca G; Bandiera T
    Arzneimittelforschung; 1987 Aug; 37(8):983-7. PubMed ID: 3675701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative formation of lithocholic acid from chenodeoxycholic and ursodeoxycholic acids in the colon.
    Bazzoli F; Fromm H; Sarva RP; Sembrat RF; Ceryak S
    Gastroenterology; 1982 Oct; 83(4):753-60. PubMed ID: 7106506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria.
    Fedorowski T; Salen G; Tint GS; Mosbach E
    Gastroenterology; 1979 Nov; 77(5):1068-73. PubMed ID: 488633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further observations on the in vitro metabolism of chenodeoxycholic acid and ursodeoxycholic acid.
    Albini E; Marca G; Mellerio G
    Arzneimittelforschung; 1982; 32(12):1554-7. PubMed ID: 6891595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism and effect of 7-oxo-lithocholic acid 3-sulfate on bile flow and biliary lipid secretion in rats.
    Yamashita H; Setchell KD
    Hepatology; 1994 Sep; 20(3):663-71. PubMed ID: 8076924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fibre on bile acid metabolism by human faecal bacteria in batch and continuous culture.
    Fadden K; Hill MJ; Owen RW
    Eur J Cancer Prev; 1997 Apr; 6(2):175-94. PubMed ID: 9237069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered bile acid metabolism in childhood functional constipation: inactivation of secretory bile acids by sulfation in a subset of patients.
    Hofmann AF; Loening-Baucke V; Lavine JE; Hagey LR; Steinbach JH; Packard CA; Griffin TL; Chatfield DA
    J Pediatr Gastroenterol Nutr; 2008 Nov; 47(5):598-606. PubMed ID: 18955863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of serum and feces bile acids determination by gas chromatography-mass spectrometry.
    Tadano T; Kanoh M; Matsumoto M; Sakamoto K; Kamano T
    Rinsho Byori; 2006 Feb; 54(2):103-10. PubMed ID: 16548228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of bile acids in the feces of colorectal cancer patients by gas chromatography-mass spectrometry (GC-MS).
    Tadano T; Kanoh M; Kondoh H; Matsumoto M; Mimura K; Kanoh Y; Sakamoto K; Kamano T
    Rinsho Byori; 2007 May; 55(5):417-27. PubMed ID: 17593686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of lethocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates.
    Cowen AE; Korman MG; Hofmann AF; Cass OW
    Gastroenterology; 1975 Jul; 69(1):59-66. PubMed ID: 1150035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bile acid excretion during drainage of extrahepatic cholestasis with refeeding of bile.
    Hedenborg G; Norlander A; Norman A
    Scand J Clin Lab Invest; 1982 Nov; 42(7):551-6. PubMed ID: 7156866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fecal excretion of bile acids: a new technique for studying bile acid kinetics in patients with ileal resection.
    Woodbury JF; Kern F
    J Clin Invest; 1971 Dec; 50(12):2531-40. PubMed ID: 5129306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epimerization of the four 3,7-dihydroxy bile acid epimers by human fecal microorganisms in anaerobic mixed cultures and in feces.
    Setoguchi T; Higashi S; Tateno S; Yahiro K; Katsuki T
    J Lipid Res; 1984 Nov; 25(11):1246-56. PubMed ID: 6520544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation of serum cholesterol to in vitro 7alpha-dehydroxylation of primary bile acids by fecal bacteria in infants and children.
    Samuel P; Schussheim A; Lieberman S; Don EC
    Pediatrics; 1974 Aug; 54(2):222-8. PubMed ID: 4847858
    [No Abstract]   [Full Text] [Related]  

  • 16. Decreased fecal bile acid output in patients with coronary atherosclerosis.
    Charach G; Rabinovich PD; Konikoff FM; Grosskopf I; Weintraub MS; Gilat T
    J Med; 1998; 29(3-4):125-36. PubMed ID: 9865454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of intestinal microbial bile salt sulfatase activity on bile salt kinetics in gnotobiotic rats.
    Robben J; Caenepeel P; Van Eldere J; Eyssen H
    Gastroenterology; 1988 Feb; 94(2):494-502. PubMed ID: 3335321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fecal bile acid concentrations in a subpopulation of the wheat bran fiber colon polyp trial.
    Alberts DS; Einspahr JG; Earnest DL; Krutzsch MF; Lin P; Hess LM; Heddens DK; Roe DJ; Martínez ME; Salen G; Batta AK
    Cancer Epidemiol Biomarkers Prev; 2003 Mar; 12(3):197-200. PubMed ID: 12646507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acids in plasma of patients without kidneys.
    Bremmelgaard A
    Scand J Clin Lab Invest; 1983 Nov; 43(7):603-7. PubMed ID: 6658375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of long-term ingestion of difructose anhydride III (DFA III) on intestinal bacteria and bile acid metabolism in humans.
    Minamida K; Asakawa C; Sujaya IN; Kaneko M; Abe A; Sone T; Hara H; Asano K; Tomita F
    J Biosci Bioeng; 2006 Feb; 101(2):149-56. PubMed ID: 16569611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.