These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 36757033)
1. A Lightweight Low-dose PET Image Super-resolution Reconstruction Method based on Convolutional Neural Network. Liu K; Yu H; Zhang M; Zhao L; Wang X; Liu S; Li H; Yang K Curr Med Imaging; 2023; 19(12):1427-1435. PubMed ID: 36757033 [TBL] [Abstract][Full Text] [Related]
2. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain. Manoj Doss KK; Chen JC Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121 [TBL] [Abstract][Full Text] [Related]
3. Full-count PET recovery from low-count image using a dilated convolutional neural network. Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608 [TBL] [Abstract][Full Text] [Related]
4. Texture transformer super-resolution for low-dose computed tomography. Zhou S; Yu L; Jin M Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699 [TBL] [Abstract][Full Text] [Related]
5. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
6. Virtual high-count PET image generation using a deep learning method. Liu J; Ren S; Wang R; Mirian N; Tsai YJ; Kulon M; Pucar D; Chen MK; Liu C Med Phys; 2022 Sep; 49(9):5830-5840. PubMed ID: 35880541 [TBL] [Abstract][Full Text] [Related]
7. FNSAM: Image super-resolution using a feedback network with self-attention mechanism. Huang Y; Wang W; Li M Technol Health Care; 2023; 31(S1):383-395. PubMed ID: 37066938 [TBL] [Abstract][Full Text] [Related]
8. Structure-preserved meta-learning uniting network for improving low-dose CT quality. Zhu M; Mao Z; Li D; Wang Y; Zeng D; Bian Z; Ma J Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36351294 [No Abstract] [Full Text] [Related]
9. Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI. Park S; Gach HM; Kim S; Lee SJ; Motai Y IEEE J Transl Eng Health Med; 2021; 9():1800113. PubMed ID: 34168920 [TBL] [Abstract][Full Text] [Related]
10. Attention-based deep neural network for partial volume correction in brain Azimi M; Kamali-Asl A; Ay MR; Zeraatkar N; Hosseini MS; Sanaat A; Arabi H Phys Med; 2024 Mar; 119():103315. PubMed ID: 38377837 [TBL] [Abstract][Full Text] [Related]
11. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
12. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Zhao M; Wei Y; Wong KKL Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953 [TBL] [Abstract][Full Text] [Related]
13. Full-dose whole-body PET synthesis from low-dose PET using high-efficiency denoising diffusion probabilistic model: PET consistency model. Pan S; Abouei E; Peng J; Qian J; Wynne JF; Wang T; Chang CW; Roper J; Nye JA; Mao H; Yang X Med Phys; 2024 Aug; 51(8):5468-5478. PubMed ID: 38588512 [TBL] [Abstract][Full Text] [Related]
14. Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging. Komori S; Cross DJ; Mills M; Ouchi Y; Nishizawa S; Okada H; Norikane T; Thientunyakit T; Anzai Y; Minoshima S Ann Nucl Med; 2022 Oct; 36(10):913-921. PubMed ID: 35913591 [TBL] [Abstract][Full Text] [Related]
15. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning. Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961 [TBL] [Abstract][Full Text] [Related]
16. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Ouyang J; Chen KT; Gong E; Pauly J; Zaharchuk G Med Phys; 2019 Aug; 46(8):3555-3564. PubMed ID: 31131901 [TBL] [Abstract][Full Text] [Related]
17. Short-axis PET image quality improvement based on a uEXPLORER total-body PET system through deep learning. Huang Z; Li W; Wu Y; Guo N; Yang L; Zhang N; Pang Z; Yang Y; Zhou Y; Shang Y; Zheng H; Liang D; Wang M; Hu Z Eur J Nucl Med Mol Imaging; 2023 Dec; 51(1):27-39. PubMed ID: 37672046 [TBL] [Abstract][Full Text] [Related]
18. Adapting a low-count acquisition of the bone scintigraphy using deep denoising super-resolution convolutional neural network. Ito T; Maeno T; Tsuchikame H; Shishido M; Nishi K; Kojima S; Hayashi T; Suzuki K Phys Med; 2022 Aug; 100():18-25. PubMed ID: 35716484 [TBL] [Abstract][Full Text] [Related]
19. A Transformer-Based Model for Super-Resolution of Anime Image. Xu S; Dutta V; He X; Matsumaru T Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365830 [TBL] [Abstract][Full Text] [Related]
20. A hybrid convolutional neural network for super-resolution reconstruction of MR images. Zheng Y; Zhen B; Chen A; Qi F; Hao X; Qiu B Med Phys; 2020 Jul; 47(7):3013-3022. PubMed ID: 32201956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]