These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36757268)

  • 21. Light-Triggered Reversible Tuning of Second-Harmonic Generation in a Photoactive Plasmonic Molecular Nanocavity.
    Liu D; Wang Y; Zhang Q; Qing YM; Wang Y; Huang H; Leung CW; Lei D
    Nano Lett; 2023 Jun; 23(12):5851-5858. PubMed ID: 37067172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes.
    Wasserroth S; Heeg S; Mueller NS; Kusch P; Hübner U; Gaufrès E; Tang NY; Martel R; Vijayaraghavan A; Reich S
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(16):10578-10585. PubMed ID: 32064011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SERS detection of the vibrational Stark effect from nitrile-terminated SAMs to probe electric fields in the diffuse double-layer.
    Oklejas V; Sjostrom C; Harris JM
    J Am Chem Soc; 2002 Mar; 124(11):2408-9. PubMed ID: 11890768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs.
    Chikkaraddy R; Baumberg JJ
    ACS Photonics; 2021 Sep; 8(9):2811-2817. PubMed ID: 34553005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement.
    Huang Y; Ma L; Li J; Zhang Z
    Nanotechnology; 2017 Mar; 28(10):105203. PubMed ID: 28107206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors.
    Biroju RK; Marepally BC; Malik P; Dhara S; Gengan S; Maity D; Narayanan TN; Giri PK
    ACS Omega; 2023 Jan; 8(4):4344-4356. PubMed ID: 36743051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities.
    Ahmed A; Banjac K; Verlekar SS; Cometto FP; Lingenfelder M; Galland C
    ACS Photonics; 2021 Jun; 8(6):1863-1872. PubMed ID: 34164567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Optomechanics Induced Hybrid Properties in Soft Materials Filled Plasmonic Nanocavities.
    Patra B; Kafle B; Habteyes TG
    Nano Lett; 2023 Jun; 23(11):5108-5115. PubMed ID: 37225673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers.
    Fu T; Chen Y; Du C; Yang W; Zhang R; Sun L; Shi D
    Nanotechnology; 2020 Mar; 31(13):135210. PubMed ID: 31835258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of electron tunneling across plasmonic nanoparticle-film junctions using nitrile vibrations.
    Wang H; Yao K; Parkhill JA; Schultz ZD
    Phys Chem Chem Phys; 2017 Feb; 19(8):5786-5796. PubMed ID: 28180214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime.
    Hajisalem G; Min Q; Gelfand R; Gordon R
    Opt Express; 2014 Apr; 22(8):9604-10. PubMed ID: 24787848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of organic dyes by surface-enhanced Raman spectroscopy using plasmonic NiAg nanocavity films.
    Petruš O; Macko J; Oriňaková R; Oriňak A; Múdra E; Kupková M; Farka Z; Pastucha M; Socha V
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119322. PubMed ID: 33373865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying high-order plasmon modes in silver nanoparticle-over-mirror configuration.
    Huang Z; Lin X; Lu Z; Du R; Tang J; Zhou L; Zhang S
    Opt Express; 2024 May; 32(11):19746-19756. PubMed ID: 38859102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.
    Simoncelli S; Roller EM; Urban P; Schreiber R; Turberfield AJ; Liedl T; Lohmüller T
    ACS Nano; 2016 Nov; 10(11):9809-9815. PubMed ID: 27649370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Giant gap-plasmon tip-enhanced Raman scattering of MoS
    Milekhin AG; Rahaman M; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Nanoscale; 2018 Feb; 10(6):2755-2763. PubMed ID: 29308796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.