These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36757284)

  • 1. The catalytic hydrogenolysis of compounds derived from guaiacol on the Cu (111) surface: mechanisms from DFT studies.
    Konadu D; Kwawu CR; Menkah ES; Tia R; Adei E; de Leeuw N
    Phys Chem Chem Phys; 2023 Feb; 25(8):6247-6252. PubMed ID: 36757284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guaiacol hydrodeoxygenation mechanism on Pt(111): insights from density functional theory and linear free energy relations.
    Lee K; Gu GH; Mullen CA; Boateng AA; Vlachos DG
    ChemSusChem; 2015 Jan; 8(2):315-22. PubMed ID: 25470789
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Pan Z; Bodi A; van Bokhoven JA; Hemberger P
    Phys Chem Chem Phys; 2022 Sep; 24(36):21786-21793. PubMed ID: 36082786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Study on the Kinetics of Thermal Decomposition of Guaiacol and Catechol.
    Furutani Y; Dohara Y; Kudo S; Hayashi JI; Norinaga K
    J Phys Chem A; 2017 Nov; 121(44):8495-8503. PubMed ID: 29016140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling approach to elucidate gas phase hydrodeoxygenation of guaiacol over a Pd(111) catalyst within DFT framework.
    Verma AM; Kishore N
    J Mol Model; 2018 Aug; 24(9):254. PubMed ID: 30151645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT insights into competing mechanisms of guaiacol hydrodeoxygenation on a platinum cluster.
    Nania C; Bertini M; Gueci L; Ferrante F; Duca D
    Phys Chem Chem Phys; 2023 Apr; 25(15):10460-10471. PubMed ID: 36987564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Hydrodeoxygenation of Bio-oil via Bimetallic Ni-V Catalysts Modified by Cross-Surface Migrated-Carbon from Biochar.
    Wu Y; Sun Y; Liang K; Yang Z; Tu R; Fan X; Cheng S; Yu H; Jiang E; Xu X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21482-21498. PubMed ID: 33928779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of chemical modifications of micro- and macromolecules in bio-oil during hydrodeoxygenation with Pd/C catalyst in supercritical ethanol.
    Oh S; Hwang H; Choi HS; Choi JW
    Chemosphere; 2014 Dec; 117():806-14. PubMed ID: 24582356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.
    Xu X; Zhang C; Liu Y; Zhai Y; Zhang R
    Chemosphere; 2013 Oct; 93(4):652-60. PubMed ID: 23876507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulations of palladium catalysed hydrodeoxygenation of 2-hydroxybenzaldehyde using density functional theory.
    Verma AM; Kishore N
    Phys Chem Chem Phys; 2017 Sep; 19(37):25582-25597. PubMed ID: 28902200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential for carboxylation-dehydroxylation of phenolic compounds by a methanogenic consortium.
    Bisaillon JG; Lépine F; Beaudet R; Sylvestre M
    Can J Microbiol; 1993 Jul; 39(7):642-8. PubMed ID: 8364800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal Ni electrode-catalyzed C-O cleavage of diaryl ethers entails direct elimination via benzyne intermediates.
    Zhou Y; Klinger GE; Hegg EL; Saffron CM; Jackson JE
    Nat Commun; 2022 Apr; 13(1):2050. PubMed ID: 35440551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst.
    Lee H; Kim H; Yu MJ; Ko CH; Jeon JK; Jae J; Park SH; Jung SC; Park YK
    Sci Rep; 2016 Jun; 6():28765. PubMed ID: 27357731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydro-deoxygenation at atmospheric pressure converts the phenolic-rich pyrolysis liquid fraction into aromatics.
    Guo X; Zhang H; Fang Y
    J Environ Manage; 2022 Mar; 306():114429. PubMed ID: 35007791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations.
    Fang H; Chen W; Li S; Li X; Duan X; Ye L; Yuan Y
    ChemSusChem; 2019 Dec; 12(23):5199-5206. PubMed ID: 31647183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic Study of the Pyrolysis and Oxidation of Guaiacol.
    Nowakowska M; Herbinet O; Dufour A; Glaude PA
    J Phys Chem A; 2018 Oct; 122(39):7894-7909. PubMed ID: 30200758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Al-SBA-15.
    Shivhare A; Hunns JA; Durndell LJ; Parlett CMA; Isaacs MA; Lee AF; Wilson K
    ChemSusChem; 2020 Sep; 13(18):4945-4953. PubMed ID: 32449298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts.
    Gupta S; Lanjewar R; Mondal P
    Chemosphere; 2022 Jan; 287(Pt 3):132220. PubMed ID: 34543895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Ni N-heterocyclic carbene catalyst for C-O bond hydrogenolysis of diphenyl ether: a density functional study.
    Sawatlon B; Wititsuwannakul T; Tantirungrotechai Y; Surawatanawong P
    Dalton Trans; 2014 Dec; 43(48):18123-33. PubMed ID: 25355042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.