These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36757629)
21. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanda A; Saravanan M Nanomedicine; 2009 Dec; 5(4):452-6. PubMed ID: 19523420 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of microbial growth by silver nanoparticles synthesized from Fraxinus xanthoxyloides leaf extract. Rafiq A; Zahid K; Qadir A; Khan MN; Khalid ZM; Ali N J Appl Microbiol; 2021 Jul; 131(1):124-134. PubMed ID: 33251642 [TBL] [Abstract][Full Text] [Related]
23. Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Paredes D; Ortiz C; Torres R Int J Nanomedicine; 2014; 9():1717-29. PubMed ID: 24729707 [TBL] [Abstract][Full Text] [Related]
24. The application of antimicrobial photodynamic inactivation on methicillin-resistant S. aureus and ESBL-producing K. pneumoniae using porphyrin photosensitizer in combination with silver nanoparticles. Malá Z; Žárská L; Bajgar R; Bogdanová K; Kolář M; Panáček A; Binder S; Kolářová H Photodiagnosis Photodyn Ther; 2021 Mar; 33():102140. PubMed ID: 33307229 [TBL] [Abstract][Full Text] [Related]
25. Biosynthesis of silver nanoparticles using endophytic Fusarium oxysporum strain NFW16 and their in vitro antibacterial potential. Ilahi N; Haleem A; Iqbal S; Fatima N; Sajjad W; Sideeq A; Ahmed S Microsc Res Tech; 2022 Apr; 85(4):1568-1579. PubMed ID: 34888986 [TBL] [Abstract][Full Text] [Related]
26. Cytotoxic and Antimicrobial Efficacy of Silver Nanoparticles Synthesized Using a Traditional Phytoproduct, Asafoetida Gum. Devanesan S; Ponmurugan K; AlSalhi MS; Al-Dhabi NA Int J Nanomedicine; 2020; 15():4351-4362. PubMed ID: 32606682 [TBL] [Abstract][Full Text] [Related]
27. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. de Moraes AC; Lima BA; de Faria AF; Brocchi M; Alves OL Int J Nanomedicine; 2015; 10():6847-61. PubMed ID: 26586946 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of mesoporous antimicrobial herbal nanomaterial-carrier for silver nanoparticles and antimicrobial sensing. Moradi N; Taghizadeh SM; Hadi N; Ghanbariasad A; Berenjian A; Khoo KS; Varjani S; Show PL; Ebrahiminezhad A Food Chem Toxicol; 2022 Jul; 165():113077. PubMed ID: 35489468 [TBL] [Abstract][Full Text] [Related]
29. Yan Y; Li G; Su M; Liang H ACS Appl Mater Interfaces; 2024 Aug; 16(34):45289-45306. PubMed ID: 39152895 [TBL] [Abstract][Full Text] [Related]
30. Green Synthesis of Silver Nanoparticles Using Huq MA Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098417 [TBL] [Abstract][Full Text] [Related]
31. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Saeb AT; Alshammari AS; Al-Brahim H; Al-Rubeaan KA ScientificWorldJournal; 2014; 2014():704708. PubMed ID: 25093206 [TBL] [Abstract][Full Text] [Related]
32. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Ansari MA; Khan HM; Khan AA; Cameotra SS; Alzohairy MA Indian J Med Microbiol; 2015; 33(1):101-9. PubMed ID: 25560011 [TBL] [Abstract][Full Text] [Related]
33. Antibiofilm effect of green engineered silver nanoparticles fabricated from Artemisia scoporia extract on the expression of icaA and icaR genes against multidrug-resistant Staphylococcus aureus. Moulavi P; Noorbazargan H; Dolatabadi A; Foroohimanjili F; Tavakoli Z; Mirzazadeh S; Hashemi M; Ashrafi F J Basic Microbiol; 2019 Jul; 59(7):701-712. PubMed ID: 31032943 [TBL] [Abstract][Full Text] [Related]
35. Green synthesis of silver nanoparticles using sodium alginate and tannic acid: characterization and anti-S. aureus activity. Tian S; Hu Y; Chen X; Liu C; Xue Y; Han B Int J Biol Macromol; 2022 Jan; 195():515-522. PubMed ID: 34920064 [TBL] [Abstract][Full Text] [Related]
36. Silver Nanoparticles Encapped by Dihydromyricetin: Optimization of Green Synthesis, Characterization, Toxicity, and Anti-MRSA Infection Activities for Zebrafish ( Qi LX; Wang XT; Huang JP; Yue TY; Lu YS; San DM; Xu YX; Han YT; Guo XY; Xie WD; Zhou YX Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791295 [TBL] [Abstract][Full Text] [Related]
37. Biologically rapid synthesis of silver nanoparticles by Akter S; Huq MA Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):672-682. PubMed ID: 32075448 [TBL] [Abstract][Full Text] [Related]
38. One-pot green synthesis and structural characterisation of silver nanoparticles using aqueous leaves extract of Singh D; Kumar V; Yadav E; Falls N; Singh M; Komal U; Verma A IET Nanobiotechnol; 2018 Sep; 12(6):748-756. PubMed ID: 30104448 [TBL] [Abstract][Full Text] [Related]
39. In silico Prediction of Mohammed AE; Alghamdi SS; Shami A; Suliman RS; Aabed K; Alotaibi MO; Rahman I Int J Nanomedicine; 2023; 18():2141-2162. PubMed ID: 37131545 [TBL] [Abstract][Full Text] [Related]
40. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Yuan YG; Peng QL; Gurunathan S Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28272303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]