These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 36757632)

  • 1. Serial Recombineering Cloning to Build Selectable and Tagged Genomic P[acman] BAC Clones for Selection Transgenesis and Functional Gene Analysis using Drosophila melanogaster.
    Venken KJT; Matinyan N; Gonzalez Y; Dierick HA
    Curr Protoc; 2023 Feb; 3(2):e675. PubMed ID: 36757632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed Transgenic Selection and Counterselection Strategies to Expedite Genetic Manipulation Workflows Using Drosophila melanogaster.
    Venken KJT; Matinyan N; Gonzalez Y; Dierick HA
    Curr Protoc; 2023 Feb; 3(2):e652. PubMed ID: 36757287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Assembly DNA Cloning to Build Plasmids for Multiplexed Transgenic Selection, Counterselection or Any Other Genetic Strategies Using Drosophila melanogaster.
    Venken KJT; Matinyan N; Gonzalez Y; Sarrion-Perdigones A; Dierick HA
    Curr Protoc; 2023 Feb; 3(2):e653. PubMed ID: 36757602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster.
    Venken KJ; He Y; Hoskins RA; Bellen HJ
    Science; 2006 Dec; 314(5806):1747-51. PubMed ID: 17138868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster.
    Venken KJ; Carlson JW; Schulze KL; Pan H; He Y; Spokony R; Wan KH; Koriabine M; de Jong PJ; White KP; Bellen HJ; Hoskins RA
    Nat Methods; 2009 Jun; 6(6):431-4. PubMed ID: 19465919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed drug-based selection and counterselection genetic manipulations in Drosophila.
    Matinyan N; Karkhanis MS; Gonzalez Y; Jain A; Saltzman A; Malovannaya A; Sarrion-Perdigones A; Dierick HA; Venken KJT
    Cell Rep; 2021 Sep; 36(11):109700. PubMed ID: 34525356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The production of C. elegans transgenes via recombineering with the galK selectable marker.
    Zhang Y; Kashyap L; Ferguson AA; Fisher AL
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21248708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgene Recombineering in Bacterial Artificial Chromosomes.
    Zeidler MG; Saunders TL
    Methods Mol Biol; 2019; 1874():43-69. PubMed ID: 30353507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombination-mediated genetic engineering of large genomic DNA transgenes.
    Ejsmont RK; Ahlfeld P; Pozniakovsky A; Stewart AF; Tomancak P; Sarov M
    Methods Mol Biol; 2011; 772():445-58. PubMed ID: 22065454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simplified counter-selection recombineering protocol for creating fluorescent protein reporter constructs directly from C. elegans fosmid genomic clones.
    Hirani N; Westenberg M; Gami MS; Davis P; Hope IA; Dolphin CT
    BMC Biotechnol; 2013 Jan; 13():1. PubMed ID: 23281894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A toolkit for high-throughput, cross-species gene engineering in Drosophila.
    Ejsmont RK; Sarov M; Winkler S; Lipinski KA; Tomancak P
    Nat Methods; 2009 Jun; 6(6):435-7. PubMed ID: 19465918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput library transgenesis in
    Stevenson ZC; Moerdyk-Schauwecker MJ; Banse SA; Patel DS; Lu H; Phillips PC
    Elife; 2023 Jul; 12():. PubMed ID: 37401921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombineering homologous recombination constructs in Drosophila.
    Carreira-Rosario A; Scoggin S; Shalaby NA; Williams ND; Hiesinger PR; Buszczak M
    J Vis Exp; 2013 Jul; (77):e50346. PubMed ID: 23893070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Plasmid Set for Efficient Bacterial Artificial Chromosome (BAC) Transgenesis in Zebrafish.
    Fuentes F; Reynolds E; Lewellis SW; Venkiteswaran G; Knaut H
    G3 (Bethesda); 2016 Apr; 6(4):829-34. PubMed ID: 26818072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems.
    Rozwadowski K; Yang W; Kagale S
    BMC Biotechnol; 2008 Nov; 8():88. PubMed ID: 19014699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid BAC selection for tol2-mediated transgenesis in zebrafish.
    Bussmann J; Schulte-Merker S
    Development; 2011 Oct; 138(19):4327-32. PubMed ID: 21865323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of bacterial artificial chromosome clones using Cre recombinase: introduction of selectable markers for expression in eukaryotic cells.
    Kim SY; Horrigan SK; Altenhofen JL; Arbieva ZH; Hoffman R; Westbrook CA
    Genome Res; 1998 Apr; 8(4):404-12. PubMed ID: 9548976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAC Recombineering and Transgenesis to Study Cell Polarity and Polarized Tissue Morphogenesis in Mice.
    Yu D; Wang J
    Methods Mol Biol; 2022; 2438():197-216. PubMed ID: 35147944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombineering, transfection, Western, IP and ChIP methods for protein tagging via gene targeting or BAC transgenesis.
    Hofemeister H; Ciotta G; Fu J; Seibert PM; Schulz A; Maresca M; Sarov M; Anastassiadis K; Stewart AF
    Methods; 2011 Apr; 53(4):437-52. PubMed ID: 21195765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A piggyBac transposon- and gateway-enhanced system for efficient BAC transgenesis.
    Zhao L; Ng ET; Koopman P
    Dev Dyn; 2014 Sep; 243(9):1086-94. PubMed ID: 24924516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.