These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36758225)

  • 21. Cloaking Transition of Droplets on Lubricated Brushes.
    Badr RGM; Hauer L; Vollmer D; Schmid F
    J Phys Chem B; 2022 Sep; 126(36):7047-7058. PubMed ID: 36062355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capillary rise in nanotubes coated with polymer brushes.
    Dimitrov DI; Milchev A; Binder K
    Ann N Y Acad Sci; 2009 Apr; 1161():537-48. PubMed ID: 19426346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces.
    Liu C; Sun J; Li J; Xiang C; Che L; Wang Z; Zhou X
    Sci Rep; 2017 Aug; 7(1):7552. PubMed ID: 28790426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semiflexible polymers grafted to a solid planar substrate: changing the structure from polymer brush to "polymer bristle".
    Milchev A; Binder K
    J Chem Phys; 2012 May; 136(19):194901. PubMed ID: 22612110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations.
    Quan X; Peng C; Dong J; Zhou J
    Soft Matter; 2016 Apr; 12(14):3352-9. PubMed ID: 26954721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes.
    Christau S; Möller T; Yenice Z; Genzer J; von Klitzing R
    Langmuir; 2014 Nov; 30(43):13033-41. PubMed ID: 25275215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elasticity-driven droplet movement on a microbeam with gradient stiffness: a biomimetic self-propelling mechanism.
    Zheng XP; Zhao HP; Gao LT; Liu JL; Yu SW; Feng XQ
    J Colloid Interface Sci; 2008 Jul; 323(1):133-40. PubMed ID: 18442826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excluded volume effects in compressed polymer brushes: A density functional theory.
    Chen C; Tang P; Qiu F; Shi AC
    J Chem Phys; 2015 Mar; 142(12):124904. PubMed ID: 25833606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer brushes in solvents of variable quality: molecular dynamics simulations using explicit solvent.
    Dimitrov DI; Milchev A; Binder K
    J Chem Phys; 2007 Aug; 127(8):084905. PubMed ID: 17764292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis.
    Moriyama K; Kidoaki S
    Langmuir; 2019 Jun; 35(23):7478-7486. PubMed ID: 30230337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion Force Analysis of Dynamic Polymer Brushes.
    Aoki T; Ito K; Yokoyama H
    Langmuir; 2020 Jun; 36(22):6210-6215. PubMed ID: 32418426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of cross-linking on partitioning of nanoparticles into a polymer brush: Coarse-grained simulations test simple approximate theories.
    Ozmaian M; Jasnow D; Eskandari Nasrabad A; Zilman A; Coalson RD
    J Chem Phys; 2018 Jan; 148(2):024902. PubMed ID: 29331141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terraced and Smooth Gradient Polymer Brushes via a Polymer Single-Crystal Assisted Grafting-To Method.
    Mei S; Li CY
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15758-15761. PubMed ID: 30298634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting the dispersion mechanism of grafted nanoparticles in polymer matrix: a detailed molecular dynamics simulation.
    Shen J; Liu J; Gao Y; Cao D; Zhang L
    Langmuir; 2011 Dec; 27(24):15213-22. PubMed ID: 22040300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial Energy Measurement on the Reconstructive Polymer Surface: Dynamic Polymer Brush by Segregation of Amphiphilic Block Copolymers.
    Saito M; Yamada NL; Ito K; Yokoyama H
    Langmuir; 2020 Jun; 36(23):6465-6472. PubMed ID: 32459495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the origins of the salt-concentration-dependent instability and lateral nanoscale heterogeneities of weak polyelectrolyte brushes: gradient brush experiment and Flory-type theoretical analysis.
    Hur J; Witte KN; Sun W; Won YY
    Langmuir; 2010 Feb; 26(3):2021-34. PubMed ID: 20099924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-droplet jumping due to surface wettability variation: molecular modeling approach.
    Farrokhbin M; Hashemzadeh Rizi S; Lohrasebi A
    Phys Chem Chem Phys; 2023 Jan; 25(3):2161-2166. PubMed ID: 36594215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-Distance Continuous Self-Transport of a Droplet by Merging Droplets on a Graphene-Covered Multibranch Gradient Groove Surface.
    Gao H; Zhang F; Liu Z; Song Y; Zhang Z; Ding J
    Langmuir; 2023 Dec; 39(48):17427-17435. PubMed ID: 37975860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres.
    Deng M; Li X; Liang H; Caswell B; Karniadakis GE
    J Fluid Mech; 2012 Nov; 711():. PubMed ID: 24353347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.