These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36758281)

  • 41. Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films.
    Yu C; Zhuang J; Dong L; Cheng K; Weng W
    Colloids Surf B Biointerfaces; 2017 Aug; 156():213-220. PubMed ID: 28531878
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway.
    Lu B; Zhu DY; Yin JH; Xu H; Zhang CQ; Ke QF; Gao YS; Guo YP
    Biofabrication; 2019 Mar; 11(2):025012. PubMed ID: 30754024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering.
    Xynos ID; Hukkanen MV; Batten JJ; Buttery LD; Hench LL; Polak JM
    Calcif Tissue Int; 2000 Oct; 67(4):321-9. PubMed ID: 11000347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass® Scaffolds.
    El-Gendy R; Kirkham J; Newby PJ; Mohanram Y; Boccaccini AR; Yang XB
    Tissue Eng Part A; 2015 Jul; 21(13-14):2034-43. PubMed ID: 25923923
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.
    Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R
    J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications.
    El-Fiqi A; Buitrago JO; Yang SH; Kim HW
    Acta Biomater; 2017 Sep; 60():38-49. PubMed ID: 28754647
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration.
    Hasan ML; Kim B; Padalhin AR; Faruq O; Sultana T; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109775. PubMed ID: 31349455
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats.
    van der Stok J; Lozano D; Chai YC; Amin Yavari S; Bastidas Coral AP; Verhaar JA; Gómez-Barrena E; Schrooten J; Jahr H; Zadpoor AA; Esbrit P; Weinans H
    Tissue Eng Part A; 2015 May; 21(9-10):1495-506. PubMed ID: 25627039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reprint of: Review of bioactive glass: From Hench to hybrids.
    Jones JR
    Acta Biomater; 2015 Sep; 23 Suppl():S53-82. PubMed ID: 26235346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution of silicate bioglass particles as porous microspheres with a view towards orthobiologics.
    Islam MT; Nuzulia NA; Macri-Pellizzeri L; Nigar F; Sari YW; Ahmed I
    J Biomater Appl; 2022 Mar; 36(8):1427-1443. PubMed ID: 35050809
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The bone anabolic effects of irisin are through preferential stimulation of aerobic glycolysis.
    Zhang D; Bae C; Lee J; Lee J; Jin Z; Kang M; Cho YS; Kim JH; Lee W; Lim SK
    Bone; 2018 Sep; 114():150-160. PubMed ID: 29775761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive.
    Wu SC; Hsu HC; Hsiao SH; Ho WF
    J Mater Sci Mater Med; 2009 Jun; 20(6):1229-36. PubMed ID: 19160020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Properties of scaffolds based on chitosan and collagen with bioglass 45S5.
    Kaczmarek B; Nadolna K; Owczarek A; Mazur O; Sionkowska A; Łukowicz K; Vishnu J; Manivasagam G; Osyczka AM
    IET Nanobiotechnol; 2020 Dec; 14(9):830-832. PubMed ID: 33399115
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation.
    Kaufmann EA; Ducheyne P; Shapiro IM
    J Biomed Mater Res; 2000 Dec; 52(4):783-96. PubMed ID: 11033562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration.
    Zeng Q; Han Y; Li H; Chang J
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):42-51. PubMed ID: 23847006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biofunctional and Tribomechanical Behavior of Porous Titanium Substrates Coated with a Bioactive Glass Bilayer (45S5-1393).
    Beltrán AM; Begines B; Alcudia A; Rodríguez-Ortiz JA; Torres Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30170-30180. PubMed ID: 32530265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Sayahpour FA; Baharvand H
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):50-64. PubMed ID: 29468802
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Negative pressure wound therapy improves bone regeneration by promoting osteogenic differentiation via the AMPK-ULK1-autophagy axis.
    Zhang S; Xie Y; Yan F; Zhang Y; Yang Z; Chen Z; Zhao Y; Huang Z; Cai L; Deng Z
    Autophagy; 2022 Sep; 18(9):2229-2245. PubMed ID: 34964701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.