Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 36758474)

  • 1. A machine learning tool for identifying non-metastatic colorectal cancer in primary care.
    Nemlander E; Ewing M; Abedi E; Hasselström J; Sjövall A; Carlsson AC; Rosenblad A
    Eur J Cancer; 2023 Mar; 182():100-106. PubMed ID: 36758474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of patients with non-metastatic colorectal cancer in primary care: a case-control study.
    Ewing M; Naredi P; Zhang C; Månsson J
    Br J Gen Pract; 2016 Dec; 66(653):e880-e886. PubMed ID: 27821670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a diagnostic prediction tool for colorectal cancer: a case-control replication study.
    Nemlander E; Rosenblad A; Abedi E; Hasselström J; Sjövall A; Carlsson AC; Ewing M
    Fam Pract; 2023 Dec; 40(5-6):844-851. PubMed ID: 36611019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased consultation frequency in primary care, a risk marker for cancer: a case-control study.
    Ewing M; Naredi P; Nemes S; Zhang C; Månsson J
    Scand J Prim Health Care; 2016 Jun; 34(2):205-12. PubMed ID: 27189513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorectal Cancer Detected by Machine Learning Models Using Conventional Laboratory Test Data.
    Li H; Lin J; Xiao Y; Zheng W; Zhao L; Yang X; Zhong M; Liu H
    Technol Cancer Res Treat; 2021; 20():15330338211058352. PubMed ID: 34806496
    [No Abstract]   [Full Text] [Related]  

  • 7. Machine learning approaches for prediction of early death among lung cancer patients with bone metastases using routine clinical characteristics: An analysis of 19,887 patients.
    Cui Y; Shi X; Wang S; Qin Y; Wang B; Che X; Lei M
    Front Public Health; 2022; 10():1019168. PubMed ID: 36276398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on
    He J; Wang Q; Zhang Y; Wu H; Zhou Y; Zhao S
    Ann Nucl Med; 2021 May; 35(5):617-627. PubMed ID: 33738763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence based personalized predictive survival among colorectal cancer patients.
    Susič D; Syed-Abdul S; Dovgan E; Jonnagaddala J; Gradišek A
    Comput Methods Programs Biomed; 2023 Apr; 231():107435. PubMed ID: 36842345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic profile characteristics of cancer patients with frequent consultations in primary care before diagnosis: a case-control study.
    Ewing M; Naredi P; Zhang C; Månsson J
    Fam Pract; 2018 Sep; 35(5):559-566. PubMed ID: 29546418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-based colorectal cancer prediction using global dietary data.
    Abdul Rahman H; Ottom MA; Dinov ID
    BMC Cancer; 2023 Feb; 23(1):144. PubMed ID: 36765299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical features of bowel disease in patients aged <50 years in primary care: a large case-control study.
    Stapley SA; Rubin GP; Alsina D; Shephard EA; Rutter MD; Hamilton WT
    Br J Gen Pract; 2017 May; 67(658):e336-e344. PubMed ID: 28347985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Machine Learning Approaches to Predict Short-Term Risk of Cardiotoxicity Among Patients with Colorectal Cancer After Starting Fluoropyrimidine-Based Chemotherapy.
    Li C; Chen L; Chou C; Ngorsuraches S; Qian J
    Cardiovasc Toxicol; 2022 Feb; 22(2):130-140. PubMed ID: 34792740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostic significance of circulating tumor cells (CTCs) in Egyptian non-metastatic colorectal cancer patients: A comparative study for four different techniques of detection (Flowcytometry, CellSearch, Quantitative Real-time PCR and Cytomorphology).
    Bahnassy AA; Salem SE; Mohanad M; Abulezz NZ; Abdellateif MS; Hussein M; Zekri CAN; Zekri AN; Allahloubi NMA
    Exp Mol Pathol; 2019 Feb; 106():90-101. PubMed ID: 30578762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment.
    Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C
    JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictors of 30-Day Mortality Among Dutch Patients Undergoing Colorectal Cancer Surgery, 2011-2016.
    van den Bosch T; Warps AK; de Nerée Tot Babberich MPM; Stamm C; Geerts BF; Vermeulen L; Wouters MWJM; Dekker JWT; Tollenaar RAEM; Tanis PJ; Miedema DM;
    JAMA Netw Open; 2021 Apr; 4(4):e217737. PubMed ID: 33900400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system.
    Zhang Z; Huang L; Li J; Wang P
    BMC Bioinformatics; 2022 Apr; 23(1):124. PubMed ID: 35395711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic test accuracy of nutritional tools used to identify undernutrition in patients with colorectal cancer: a systematic review.
    Håkonsen SJ; Pedersen PU; Bath-Hextall F; Kirkpatrick P
    JBI Database System Rev Implement Rep; 2015 May; 13(4):141-87. PubMed ID: 26447079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gradient Boosting Machine Learning Model for Predicting Early Mortality in the Emergency Department Triage: Devising a Nine-Point Triage Score.
    Klug M; Barash Y; Bechler S; Resheff YS; Tron T; Ironi A; Soffer S; Zimlichman E; Klang E
    J Gen Intern Med; 2020 Jan; 35(1):220-227. PubMed ID: 31677104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.