These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36758502)
1. Rapid determination of the shell content in cocoa products using FT-NIR spectroscopy and chemometrics. Drees A; Brockelt J; Cvancar L; Fischer M Talanta; 2023 May; 256():124310. PubMed ID: 36758502 [TBL] [Abstract][Full Text] [Related]
2. Handheld and benchtop vis/NIR spectrometer combined with PLS regression for fast prediction of cocoa shell in cocoa powder. Oliveira MM; Badaró AT; Esquerre CA; Kamruzzaman M; Barbin DF Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 298():122807. PubMed ID: 37148660 [TBL] [Abstract][Full Text] [Related]
3. Food fingerprinting: Mass spectrometric determination of the cocoa shell content (Theobroma cacao L.) in cocoa products by HPLC-QTOF-MS. Cain N; Alka O; Segelke T; von Wuthenau K; Kohlbacher O; Fischer M Food Chem; 2019 Nov; 298():125013. PubMed ID: 31260999 [TBL] [Abstract][Full Text] [Related]
4. Detection and quantification of cocoa powder adulteration using Vis-NIR spectroscopy with chemometrics approach. Millatina NRN; Calle JLP; Barea-Sepúlveda M; Setyaningsih W; Palma M Food Chem; 2024 Aug; 449():139212. PubMed ID: 38583399 [TBL] [Abstract][Full Text] [Related]
5. Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis. Teye E; Huang X; Sam-Amoah LK; Takrama J; Boison D; Botchway F; Kumi F Food Chem; 2015 Jun; 176():403-10. PubMed ID: 25624249 [TBL] [Abstract][Full Text] [Related]
6. Rapid Determination of Nutmeg Shell Content in Ground Nutmeg Using FT-NIR Spectroscopy and Machine Learning. Drees A; Bockmayr B; Bockmayr M; Fischer M Foods; 2023 Aug; 12(15):. PubMed ID: 37569208 [TBL] [Abstract][Full Text] [Related]
7. Food Targeting: Determination of the Cocoa Shell Content ( Cain N; Marji C; von Wuthenau K; Segelke T; Fischer M Metabolites; 2020 Mar; 10(3):. PubMed ID: 32151103 [TBL] [Abstract][Full Text] [Related]
8. NIR and MIR spectroscopy for quick detection of the adulteration of cocoa content in chocolates. Santos IA; Conceição DG; Viana MB; Silva GJ; Santos LS; Ferrão SPB Food Chem; 2021 Jul; 349():129095. PubMed ID: 33545603 [TBL] [Abstract][Full Text] [Related]
9. Fast and neat--determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Krähmer A; Engel A; Kadow D; Ali N; Umaharan P; Kroh LW; Schulz H Food Chem; 2015 Aug; 181():152-9. PubMed ID: 25794734 [TBL] [Abstract][Full Text] [Related]
10. Occurrence of ochratoxin A in cocoa by-products and determination of its reduction during chocolate manufacture. Copetti MV; Iamanaka BT; Nester MA; Efraim P; Taniwaki MH Food Chem; 2013 Jan; 136(1):100-4. PubMed ID: 23017398 [TBL] [Abstract][Full Text] [Related]
11. Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Hue C; Gunata Z; Bergounhou A; Assemat S; Boulanger R; Sauvage FX; Davrieux F Food Chem; 2014 Apr; 148():240-5. PubMed ID: 24262552 [TBL] [Abstract][Full Text] [Related]
12. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Teye E; Huang X; Dai H; Chen Q Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():183-9. PubMed ID: 23770507 [TBL] [Abstract][Full Text] [Related]
13. Total lipid prediction in single intact cocoa beans by hyperspectral chemical imaging. Caporaso N; Whitworth MB; Fisk ID Food Chem; 2021 May; 344():128663. PubMed ID: 33277124 [TBL] [Abstract][Full Text] [Related]
14. Ghanaian cocoa bean fermentation characterized by spectroscopic and chromatographic methods and chemometrics. Aculey PC; Snitkjaer P; Owusu M; Bassompiere M; Takrama J; Nørgaard L; Petersen MA; Nielsen DS J Food Sci; 2010 Aug; 75(6):S300-7. PubMed ID: 20722952 [TBL] [Abstract][Full Text] [Related]
15. Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy. Villanueva E; Glorio-Paulet P; Giusti MM; Sigurdson GT; Yao S; Rodríguez-Saona LE Talanta; 2023 May; 257():124386. PubMed ID: 36858014 [TBL] [Abstract][Full Text] [Related]
16. Fast Discrimination of Chocolate Quality Based on Average-Mass-Spectra Fingerprints of Cocoa Polyphenols. Fayeulle N; Meudec E; Boulet JC; Vallverdu-Queralt A; Hue C; Boulanger R; Cheynier V; Sommerer N J Agric Food Chem; 2019 Mar; 67(9):2723-2731. PubMed ID: 30761902 [TBL] [Abstract][Full Text] [Related]
17. Geographical discrimination of Paw San rice cultivated in different regions of Myanmar using near-infrared spectroscopy, headspace-gas chromatography-ion mobility spectrometry and chemometrics. Thantar S; Mihailova A; Islam MD; Maxwell F; Hamed I; Vlachou C; Kelly SD Talanta; 2024 Jun; 273():125910. PubMed ID: 38492284 [TBL] [Abstract][Full Text] [Related]
18. Development of a gas-liquid chromatographic method for the analysis of fatty acid tryptamides in cocoa products. Hug B; Golay PA; Giuffrida F; Dionisi F; Destaillats F J Agric Food Chem; 2006 May; 54(9):3199-203. PubMed ID: 16637672 [TBL] [Abstract][Full Text] [Related]
19. Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy. Hu Y; Pan ZJ; Liao W; Li J; Gruget P; Kitts DD; Lu X Food Chem; 2016 Jul; 202():254-61. PubMed ID: 26920292 [TBL] [Abstract][Full Text] [Related]
20. Surveillance of Cadmium Concentration in Chocolate and Cocoa Powder Products Distributed in Japan. Kataoka Y; Watanabe T; Hayashi K; Akiyama H Shokuhin Eiseigaku Zasshi; 2018; 59(6):269-274. PubMed ID: 30626784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]