These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36759331)
1. A non-homogeneous model of chromosome-number evolution to reveal shifts in the transition patterns across the phylogeny. Shafir A; Halabi K; Escudero M; Mayrose I New Phytol; 2023 May; 238(4):1733-1744. PubMed ID: 36759331 [TBL] [Abstract][Full Text] [Related]
2. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae). Márquez-Corro JI; Martín-Bravo S; Spalink D; Luceño M; Escudero M Mol Phylogenet Evol; 2019 Jun; 135():203-209. PubMed ID: 30880144 [TBL] [Abstract][Full Text] [Related]
3. Probabilistic models of chromosome number evolution and the inference of polyploidy. Mayrose I; Barker MS; Otto SP Syst Biol; 2010 Mar; 59(2):132-44. PubMed ID: 20525626 [TBL] [Abstract][Full Text] [Related]
4. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae). Ribeiro T; Buddenhagen CE; Thomas WW; Souza G; Pedrosa-Harand A Protoplasma; 2018 Jan; 255(1):263-272. PubMed ID: 28844108 [TBL] [Abstract][Full Text] [Related]
5. Inferring Chromosome Number Changes Along a Phylogeny Using chromEvol. Rice A; Mayrose I Methods Mol Biol; 2023; 2545():175-187. PubMed ID: 36720813 [TBL] [Abstract][Full Text] [Related]
6. Model adequacy tests for probabilistic models of chromosome-number evolution. Rice A; Mayrose I New Phytol; 2021 Mar; 229(6):3602-3613. PubMed ID: 33226654 [TBL] [Abstract][Full Text] [Related]
7. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Elliott TL; Muasya AM; Bureš P Ann Bot; 2023 Feb; 131(1):143-156. PubMed ID: 35226733 [TBL] [Abstract][Full Text] [Related]
8. Drivers of diversification in Linum (Linaceae) by means of chromosome evolution: correlations with biogeography, breeding system and habit. Valdés-Florido A; Tan L; Maguilla E; Simón-Porcar VI; Zhou YH; Arroyo J; Escudero M Ann Bot; 2023 Nov; 132(5):949-962. PubMed ID: 37738171 [TBL] [Abstract][Full Text] [Related]
9. A deep dive into the ancestral chromosome number and genome size of flowering plants. Carta A; Bedini G; Peruzzi L New Phytol; 2020 Nov; 228(3):1097-1106. PubMed ID: 32421860 [TBL] [Abstract][Full Text] [Related]
10. Cladogenetic and Anagenetic Models of Chromosome Number Evolution: A Bayesian Model Averaging Approach. Freyman WA; Höhna S Syst Biol; 2018 Mar; 67(2):195-215. PubMed ID: 28945917 [TBL] [Abstract][Full Text] [Related]
11. Using ChromEvol to Determine the Mode of Chromosomal Evolution. Escudero M; Maguilla E; Márquez-Corro JI; Martín-Bravo S; Mayrose I; Shafir A; Tan L; Tribble C; Zenil-Ferguson R Methods Mol Biol; 2023; 2672():529-547. PubMed ID: 37335498 [TBL] [Abstract][Full Text] [Related]
12. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. Escudero M; Martín-Bravo S; Mayrose I; Fernández-Mazuecos M; Fiz-Palacios O; Hipp AL; Pimentel M; Jiménez-Mejías P; Valcárcel V; Vargas P; Luceño M PLoS One; 2014; 9(1):e85266. PubMed ID: 24416374 [TBL] [Abstract][Full Text] [Related]
13. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Glick L; Mayrose I Mol Biol Evol; 2014 Jul; 31(7):1914-22. PubMed ID: 24710517 [TBL] [Abstract][Full Text] [Related]
14. Is the diversification of Mediterranean Basin plant lineages coupled to karyotypic changes? Escudero M; Balao F; Martín-Bravo S; Valente L; Valcárcel V Plant Biol (Stuttg); 2018 Jan; 20 Suppl 1():166-175. PubMed ID: 28295874 [TBL] [Abstract][Full Text] [Related]
15. The Evolution of Haploid Chromosome Numbers in the Sunflower Family. Mota L; Torices R; Loureiro J Genome Biol Evol; 2016 Dec; 8(11):3516-3528. PubMed ID: 27797951 [TBL] [Abstract][Full Text] [Related]
16. Chromosomal evolution in Cryptangieae Benth. (Cyperaceae): Evidence of holocentrism and pseudomonads. Chaves ALA; Ferreira MTM; Escudero M; Luceño M; Costa SM Protoplasma; 2024 May; 261(3):527-541. PubMed ID: 38123818 [TBL] [Abstract][Full Text] [Related]
17. An Overview to the Index to Chromosome Numbers in Asteraceae Database: Revisiting Base Chromosome Numbers, Polyploidy, Descending Dysploidy, and Hybridization. Semple JC; Watanabe K Methods Mol Biol; 2023; 2703():161-171. PubMed ID: 37646944 [TBL] [Abstract][Full Text] [Related]
18. Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae). Escudero M; Hipp A Am J Bot; 2013 Dec; 100(12):2403-11. PubMed ID: 24249788 [TBL] [Abstract][Full Text] [Related]
19. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Blöch C; Weiss-Schneeweiss H; Schneeweiss GM; Barfuss MH; Rebernig CA; Villaseñor JL; Stuessy TF Mol Phylogenet Evol; 2009 Oct; 53(1):220-33. PubMed ID: 19272456 [TBL] [Abstract][Full Text] [Related]
20. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Stull GW; Qu XJ; Parins-Fukuchi C; Yang YY; Yang JB; Yang ZY; Hu Y; Ma H; Soltis PS; Soltis DE; Li DZ; Smith SA; Yi TS Nat Plants; 2021 Aug; 7(8):1015-1025. PubMed ID: 34282286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]