BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36759336)

  • 1. HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases.
    Kobets VA; Ulianov SV; Galitsyna AA; Doronin SA; Mikhaleva EA; Gelfand MS; Shevelyov YY; Razin SV; Khrameeva EE
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36759336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data.
    Osuntoki IG; Harrison A; Dai H; Bao Y; Zabet NR
    Bioinformatics; 2022 Jul; 38(14):3523-3531. PubMed ID: 35678507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments.
    Stansfield JC; Cresswell KG; Dozmorov MG
    Bioinformatics; 2019 Sep; 35(17):2916-2923. PubMed ID: 30668639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HCMB: A stable and efficient algorithm for processing the normalization of highly sparse Hi-C contact data.
    Wu H; Wang X; Chu M; Li D; Cheng L; Zhou K
    Comput Struct Biotechnol J; 2021; 19():2637-2645. PubMed ID: 34025950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments.
    Magnitov MD; Garaev AK; Tyakht AV; Ulianov SV; Razin SV
    BMC Bioinformatics; 2022 Apr; 23(1):116. PubMed ID: 35366792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. normGAM: an R package to remove systematic biases in genome architecture mapping data.
    Liu T; Wang Z
    BMC Genomics; 2019 Dec; 20(Suppl 12):1006. PubMed ID: 31888469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
    Li W; Gong K; Li Q; Alber F; Zhou XJ
    Bioinformatics; 2015 Mar; 31(6):960-2. PubMed ID: 25391400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. covNorm: An R package for coverage based normalization of Hi-C and capture Hi-C data.
    Kim K; Jung I
    Comput Struct Biotechnol J; 2021; 19():3149-3159. PubMed ID: 34141136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HiCRep.py: fast comparison of Hi-C contact matrices in Python.
    Lin D; Sanders J; Noble WS
    Bioinformatics; 2021 Sep; 37(18):2996-2997. PubMed ID: 33576390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of normalization methods for Hi-C data.
    Lyu H; Liu E; Wu Z
    Biotechniques; 2020 Feb; 68(2):56-64. PubMed ID: 31588782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference panel-guided super-resolution inference of Hi-C data.
    Zhang Y; Blanchette M
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i386-i393. PubMed ID: 37387127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.