These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36759336)

  • 21. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
    Kaul A; Bhattacharyya S; Ay F
    Nat Protoc; 2020 Mar; 15(3):991-1012. PubMed ID: 31980751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biased visibility in Hi-C datasets marks dynamically regulated condensed and decondensed chromatin states genome-wide.
    Chandradoss KR; Guthikonda PK; Kethavath S; Dass M; Singh H; Nayak R; Kurukuti S; Sandhu KS
    BMC Genomics; 2020 Feb; 21(1):175. PubMed ID: 32087673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.
    Cardozo Gizzi AM; Cattoni DI; Fiche JB; Espinola SM; Gurgo J; Messina O; Houbron C; Ogiyama Y; Papadopoulos GL; Cavalli G; Lagha M; Nollmann M
    Mol Cell; 2019 Apr; 74(1):212-222.e5. PubMed ID: 30795893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Freeze substitution Hi-C, a convenient and cost-effective method for capturing the natural 3D chromatin conformation from frozen samples.
    Zheng W; Yang Z; Ge X; Feng Y; Wang Y; Liu C; Luan Y; Cai K; Vakal S; You F; Guo W; Wang W; Feng Z; Li F
    J Genet Genomics; 2021 Mar; 48(3):237-247. PubMed ID: 33573880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methods for the Differential Analysis of Hi-C Data.
    Nicoletti C
    Methods Mol Biol; 2022; 2301():61-95. PubMed ID: 34415531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TADfit is a multivariate linear regression model for profiling hierarchical chromatin domains on replicate Hi-C data.
    Liu E; Lyu H; Peng Q; Liu Y; Wang T; Han J
    Commun Biol; 2022 Jun; 5(1):608. PubMed ID: 35725901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
    Oliveira Junior AB; Contessoto VG; Mello MF; Onuchic JN
    J Mol Biol; 2021 Mar; 433(6):166700. PubMed ID: 33160979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HPTAD: A computational method to identify topologically associating domains from HiChIP and PLAC-seq datasets.
    Rosen J; Lee L; Abnousi A; Chen J; Wen J; Hu M; Li Y
    Comput Struct Biotechnol J; 2023; 21():931-939. PubMed ID: 38213897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ProbC: joint modeling of epigenome and transcriptome effects in 3D genome.
    Sefer E
    BMC Genomics; 2022 Apr; 23(1):287. PubMed ID: 35397520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Four-Dimensional Chromosome Structure Prediction.
    Highsmith M; Cheng J
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of gene co-expression from chromatin contacts with graph attention network.
    Zhang K; Wang C; Sun L; Zheng J
    Bioinformatics; 2022 Sep; 38(19):4457-4465. PubMed ID: 35929807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization.
    Matthey-Doret C; Baudry L; Mortaza S; Moreau P; Koszul R; Cournac A
    Methods Mol Biol; 2022; 2301():1-15. PubMed ID: 34415528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.