These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36759667)

  • 1. EEG is better left alone.
    Delorme A
    Sci Rep; 2023 Feb; 13(1):2372. PubMed ID: 36759667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RELAX part 2: A fully automated EEG data cleaning algorithm that is applicable to Event-Related-Potentials.
    Bailey NW; Hill AT; Biabani M; Murphy OW; Rogasch NC; McQueen B; Miljevic A; Fitzgerald PB
    Clin Neurophysiol; 2023 May; 149():202-222. PubMed ID: 36822996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
    Delorme A; Makeig S
    J Neurosci Methods; 2004 Mar; 134(1):9-21. PubMed ID: 15102499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.
    Winkler I; Debener S; Müller KR; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4101-5. PubMed ID: 26737196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HAPPILEE: HAPPE In Low Electrode Electroencephalography, a standardized pre-processing software for lower density recordings.
    Lopez KL; Monachino AD; Morales S; Leach SC; Bowers ME; Gabard-Durnam LJ
    Neuroimage; 2022 Oct; 260():119390. PubMed ID: 35817295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Pipeline for Infants Continuous EEG (APICE): A flexible pipeline for developmental cognitive studies.
    Fló A; Gennari G; Benjamin L; Dehaene-Lambertz G
    Dev Cogn Neurosci; 2022 Apr; 54():101077. PubMed ID: 35093730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERP denoising in multichannel EEG data using contrasts between signal and noise subspaces.
    Ivannikov A; Kalyakin I; Hämäläinen J; Leppänen PH; Ristaniemi T; Lyytinen H; Kärkkäinen T
    J Neurosci Methods; 2009 Jun; 180(2):340-51. PubMed ID: 19464521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-automatic identification of independent components representing EEG artifact.
    Viola FC; Thorne J; Edmonds B; Schneider T; Eichele T; Debener S
    Clin Neurophysiol; 2009 May; 120(5):868-77. PubMed ID: 19345611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoreject: Automated artifact rejection for MEG and EEG data.
    Jas M; Engemann DA; Bekhti Y; Raimondo F; Gramfort A
    Neuroimage; 2017 Oct; 159():417-429. PubMed ID: 28645840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graphical user interface for infant ERP analysis.
    Kaatiala J; Yrttiaho S; Forssman L; Perdue K; Leppänen J
    Behav Res Methods; 2014 Sep; 46(3):745-57. PubMed ID: 24264591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data.
    Pernet CR; Chauveau N; Gaspar C; Rousselet GA
    Comput Intell Neurosci; 2011; 2011():831409. PubMed ID: 21403915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection.
    Nolan H; Whelan R; Reilly RB
    J Neurosci Methods; 2010 Sep; 192(1):152-62. PubMed ID: 20654646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software.
    Rogasch NC; Sullivan C; Thomson RH; Rose NS; Bailey NW; Fitzgerald PB; Farzan F; Hernandez-Pavon JC
    Neuroimage; 2017 Feb; 147():934-951. PubMed ID: 27771347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automagic: Standardized preprocessing of big EEG data.
    Pedroni A; Bahreini A; Langer N
    Neuroimage; 2019 Oct; 200():460-473. PubMed ID: 31233907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the causes and consequences of variability in infant ERP editing practices.
    Monroy C; Domínguez-Martínez E; Taylor B; Marin OP; Parise E; Reid VM
    Dev Psychobiol; 2021 Dec; 63(8):e22217. PubMed ID: 34813094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Maryland analysis of developmental EEG (MADE) pipeline.
    Debnath R; Buzzell GA; Morales S; Bowers ME; Leach SC; Fox NA
    Psychophysiology; 2020 Jun; 57(6):e13580. PubMed ID: 32293719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm.
    Mutanen TP; Metsomaa J; Liljander S; Ilmoniemi RJ
    Neuroimage; 2018 Feb; 166():135-151. PubMed ID: 29061529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MNE software for processing MEG and EEG data.
    Gramfort A; Luessi M; Larson E; Engemann DA; Strohmeier D; Brodbeck C; Parkkonen L; Hämäläinen MS
    Neuroimage; 2014 Feb; 86():446-60. PubMed ID: 24161808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics.
    da Cruz JR; Chicherov V; Herzog MH; Figueiredo P
    Clin Neurophysiol; 2018 Jul; 129(7):1427-1437. PubMed ID: 29730542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of EEG spatial-spectral-temporal signatures of errors: a comparative study of ICA-based and channel-based methods.
    Shou G; Ding L
    Brain Topogr; 2015 Jan; 28(1):47-61. PubMed ID: 25228153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.