BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36759754)

  • 1. Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria.
    Raina JB; Giardina M; Brumley DR; Clode PL; Pernice M; Guagliardo P; Bougoure J; Mendis H; Smriga S; Sonnenschein EC; Ullrich MS; Stocker R; Seymour JR
    Nat Microbiol; 2023 Mar; 8(3):510-521. PubMed ID: 36759754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a
    Zheng Q; Wang Y; Lu J; Lin W; Chen F; Jiao N
    mBio; 2020 Feb; 11(1):. PubMed ID: 32071270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Survival of
    Zhang Z; Nair S; Tang L; Zhao H; Hu Z; Chen M; Zhang Y; Kao SJ; Jiao N; Zhang Y
    mBio; 2021 Aug; 12(4):e0161421. PubMed ID: 34465027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotaxis shapes the microscale organization of the ocean's microbiome.
    Raina JB; Lambert BS; Parks DH; Rinke C; Siboni N; Bramucci A; Ostrowski M; Signal B; Lutz A; Mendis H; Rubino F; Fernandez VI; Stocker R; Hugenholtz P; Tyson GW; Seymour JR
    Nature; 2022 May; 605(7908):132-138. PubMed ID: 35444277
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Calfee BC; Glasgo LD; Zinser ER
    mBio; 2022 Feb; 13(1):e0257121. PubMed ID: 35012332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemotaxis may assist marine heterotrophic bacterial diazotrophs to find microzones suitable for N
    Hallstrøm S; Raina JB; Ostrowski M; Parks DH; Tyson GW; Hugenholtz P; Stocker R; Seymour JR; Riemann L
    ISME J; 2022 Nov; 16(11):2525-2534. PubMed ID: 35915168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures.
    Zheng Q; Wang Y; Xie R; Lang AS; Liu Y; Lu J; Zhang X; Sun J; Suttle CA; Jiao N
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling selective pressures on phytoplankton in the global ocean.
    Bragg JG; Dutkiewicz S; Jahn O; Follows MJ; Chisholm SW
    PLoS One; 2010 Mar; 5(3):e9569. PubMed ID: 20224766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic reconstructions and potential metabolic strategies of generalist and specialist heterotrophic bacteria associated with an estuary Synechococcus culture.
    Zheng Q; Lu J; Wang Y; Jiao N
    FEMS Microbiol Ecol; 2019 Mar; 95(3):. PubMed ID: 30689834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecology and physics of bacterial chemotaxis in the ocean.
    Stocker R; Seymour JR
    Microbiol Mol Biol Rev; 2012 Dec; 76(4):792-812. PubMed ID: 23204367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake.
    Ruiz-González C; Simó R; Vila-Costa M; Sommaruga R; Gasol JM
    ISME J; 2012 Mar; 6(3):650-9. PubMed ID: 21955992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotactic response of marine micro-organisms to micro-scale nutrient layers.
    Seymour JR; Marcos ; Stocker R
    J Vis Exp; 2007; (4):203. PubMed ID: 18979007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment.
    Arandia-Gorostidi N; Weber PK; Alonso-Sáez L; Morán XA; Mayali X
    ISME J; 2017 Mar; 11(3):641-650. PubMed ID: 27922602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux.
    Landa M; Burns AS; Durham BP; Esson K; Nowinski B; Sharma S; Vorobev A; Nielsen T; Kiene RP; Moran MA
    ISME J; 2019 Oct; 13(10):2536-2550. PubMed ID: 31227817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean.
    Durham BP; Boysen AK; Carlson LT; Groussman RD; Heal KR; Cain KR; Morales RL; Coesel SN; Morris RM; Ingalls AE; Armbrust EV
    Nat Microbiol; 2019 Oct; 4(10):1706-1715. PubMed ID: 31332382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct metabolic strategies of the dominant heterotrophic bacterial groups associated with marine Synechococcus.
    Xia X; Zheng Q; Leung SK; Wang Y; Lee PY; Jing H; Jiao N; Liu H
    Sci Total Environ; 2021 Dec; 798():149208. PubMed ID: 34375229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles.
    Chakraborty S; Andersen KH; Visser AW; Inomura K; Follows MJ; Riemann L
    Nat Commun; 2021 Jul; 12(1):4085. PubMed ID: 34215729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimethylsulfoniopropionate uptake by marine phytoplankton.
    Vila-Costa M; Simó R; Harada H; Gasol JM; Slezak D; Kiene RP
    Science; 2006 Oct; 314(5799):652-4. PubMed ID: 17068265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico.
    Popendorf KJ; Duhamel S
    Environ Microbiol; 2015 Oct; 17(10):3992-4006. PubMed ID: 26033372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus.
    Garcia NS; Bonachela JA; Martiny AC
    ISME J; 2016 Nov; 10(11):2715-2724. PubMed ID: 27058506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.