BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 36760077)

  • 1. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise.
    Dombrecht D; Van Daele U; Van Asbroeck B; Schieffelers D; Guns PJ; Gebruers N; Meirte J; van Breda E
    J Cachexia Sarcopenia Muscle; 2023 Apr; 14(2):758-770. PubMed ID: 36760077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia.
    Song J; Clark A; Wade CE; Wolf SE
    JPEN J Parenter Enteral Nutr; 2021 Nov; 45(8):1627-1633. PubMed ID: 34296448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burn-induced hypermetabolism and skeletal muscle dysfunction.
    Knuth CM; Auger C; Jeschke MG
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C58-C71. PubMed ID: 33909503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise treatment to counteract protein wasting of chronic diseases.
    Zinna EM; Yarasheski KE
    Curr Opin Clin Nutr Metab Care; 2003 Jan; 6(1):87-93. PubMed ID: 12496685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle wasting in cardiac cachexia.
    Strassburg S; Springer J; Anker SD
    Int J Biochem Cell Biol; 2005 Oct; 37(10):1938-47. PubMed ID: 15927519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wasting away:
    Cheng AJ; Hawke TJ
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C38-C39. PubMed ID: 33950698
    [No Abstract]   [Full Text] [Related]  

  • 7. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery.
    Magne H; Savary-Auzeloux I; Rémond D; Dardevet D
    Nutr Res Rev; 2013 Dec; 26(2):149-65. PubMed ID: 23930668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic approaches for muscle wasting disorders.
    Lynch GS; Schertzer JD; Ryall JG
    Pharmacol Ther; 2007 Mar; 113(3):461-87. PubMed ID: 17258813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of exercise as a preventative measure to muscle wasting.
    Graham ZA; Lavin KM; O'Bryan SM; Thalacker-Mercer AE; Buford TW; Ford KM; Broderick TJ; Bamman MM
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C40-C57. PubMed ID: 33950699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
    Ogunbileje JO; Porter C; Herndon DN; Chao T; Abdelrahman DR; Papadimitriou A; Chondronikola M; Zimmers TA; Reidy PT; Rasmussen BB; Sidossis LS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E436-48. PubMed ID: 27382037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post burn muscle wasting and the effects of treatments.
    Pereira C; Murphy K; Jeschke M; Herndon DN
    Int J Biochem Cell Biol; 2005 Oct; 37(10):1948-61. PubMed ID: 16109499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy.
    Malavaki CJ; Sakkas GK; Mitrou GI; Kalyva A; Stefanidis I; Myburgh KH; Karatzaferi C
    J Muscle Res Cell Motil; 2015 Dec; 36(6):405-21. PubMed ID: 26728748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiology of peripheral muscle wasting in cardiac cachexia.
    Filippatos GS; Anker SD; Kremastinos DT
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):249-54. PubMed ID: 15809526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease.
    Langen RC; Gosker HR; Remels AH; Schols AM
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2245-56. PubMed ID: 23827718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of skeletal muscle protein turnover following severe burn trauma in children.
    Malagaris I; Herndon DN; Polychronopoulou E; Rontoyanni VG; Andersen CR; Suman OE; Porter C; Sidossis LS
    Clin Nutr; 2019 Jun; 38(3):1348-1354. PubMed ID: 29907353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle Atrophy After ACL Injury: Implications for Clinical Practice.
    Lepley LK; Davi SM; Burland JP; Lepley AS
    Sports Health; 2020; 12(6):579-586. PubMed ID: 32866081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss.
    Bajotto G; Shimomura Y
    J Nutr Sci Vitaminol (Tokyo); 2006 Aug; 52(4):233-47. PubMed ID: 17087049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies.
    Sandri M; Coletto L; Grumati P; Bonaldo P
    J Cell Sci; 2013 Dec; 126(Pt 23):5325-33. PubMed ID: 24293330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.